Enzymes in Tenderization of Meat - The System of Calpains and Other Systems - a Review

Open access

Enzymes in Tenderization of Meat - The System of Calpains and Other Systems - a Review

Tenderness of meat is considered as the most important feature of meat quality. Three proteolytic systems present in a muscle were examined as those which can play a role in the postmortem proteolysis and tenderization: the system of calpains, lysosomal cathepsins and MCP (multicatalytic proteinase complex). There are several theories (enzymatic or non-enzymatic) explaining the tenderization process. The calpain theory of tenderization was recognized as the most probable. During tenderization the main structures of a cytoskeleton are degraded as well as myofibril and cytoskeletal proteins. Meat becomes soft and the process of tenderization is accompanied by changes in the ultrastructure (degradation of the Z-line and the I-band). Many studies show that the system of calpains (especially calpain I and calpastatin) plays a major role in postmortem proteolysis and meat tenderization. However, recent studies show that proteasomes and caspases may be responsible for this process as well. This paper includes the characterization of calpains as well as describes the construction and functioning of the system of calpains. Additionally, this article presents factors influencing the activity of calpains. It was also mentioned that other systems, such as proteasomes and caspases, may be involved in postmortem tenderization of meat.

Bernard C., Cassar-Malek I., Le Cunff M., Dubroeucq H., Renard G., Hocquette J. F., New indicators of beef sensory quality revealed by expression of specific genes. J. Agr. Food Chem., 2007, 55, 5229-5237.

Boehm M. L., Kendall T. L., Thompson V. F., Goll D. E., Changes in the calpains and calpastatin during post mortem storage of bovine muscle. J. Anim. Sci., 1998, 76, 2415-2434.

Boleman S. J., Boleman S. L., Bidner T. D., Mc Millin K. W., Monlezun C. J., Effects of postmortem time of calcium chloride injection on beef tenderness and drip, cooking and total loss. Meat Sci., 1995, 39, 35-41.

Boleman S. J., Boleman S. L., Miller R. K., Taylor J. F., Cross H. R., Wheeler T. L., Koohmaraie M., Shackelford S. D., Miller M. F., West R. L., Johnson D. D., Savell J. W., Consumer evaluation of beef of known categories of tenderness. J. Anim. Sci., 1997, 75, 1521-1524.

Camou J. P., Mares S. W., Marchello J. A., Vazquez R., Taylor M., Thompson V. F., Goll D. E., Isolation and characterization of μ-calpain, m-calpain, and calpastatin from postmortem muscle. I. Initial steps. J. Anim. Sci., 2007, 85, 3400-3414.

Carragher N. O., Frame M. C., Calpain: a role in cell transformation and migration. Int. J. Biochem. Cell Biol., 2002, 34, 1539-1543.

Casas E., White S. N., Wheeler T. L., Shackelford S. D., Koohmaraie M., Riley D. G., Chase C. C., Johnson D. D., Smith T. P. L., Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J. Anim. Sci., 2006, 84, 520-525.

Chen L., Feng X. C., Lu F., Xu X. L., Zhou G. H., Li Q. Y., Guo X. Y., Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing. Meat Sci., 2011, 87, 165-174.

Dahlmann B., Ruppert T., Kloetzel P. M., Kuehn L., Subtypes of 20S proteasomes from skeletal muscle. Biochimie, 2001, 83, 295-299.

Destefanis G., Brugiapaglia A., Barge M. T., Dal Molin E., Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci., 2008, 78, 153-156.

Dransfield E., Wakefield D. K., Parkman I. D., Modelling postmortem tenderisation - I: Texture of electrically stimulated and non-stimulated beef. Meat Sci., 1992a, 31, 57-73.

Dransfield E., Etherington D. J., Taylor M. A. J., Modelling post-mortem tenderisation - II: Enzyme changes during storage of electrically stimulated and non-stimulated beef. Meat Sci., 1992b, 31, 75-84.

Dransfield E., Modelling post-mortem tenderisation - III: Role of calpain I in conditioning. Meat Sci., 1992c, 31, 85-94.

Dransfield E., Optimisation of tenderisation, ageing and tenderness. Meat Sci., 1994a, 36, 105-121.

Dransfield E., Modelling post-mortem tenderisation - V: Inactivation of calpains. Meat Sci., 1994b, 37, 391-409.

Dransfield E., Meat tenderness-the μ-calpain hypothesis. 1999, in: 45th ICoMST, pp. 220-228.

Dutaud D., Aubry L., Sentandreu M. A., Ouali A., Bovine muscle 20S proteasome: I. Simple purification procedure and enzymatic characterization in relation with postmortem conditions. Meat Sci., 2006, 74, 327-336.

Feldkamp T. J., Schroeder T. C., Lusk J. L., Determining consumer valuation of differentiated beef steak quality attributes. J. Muscle Foods, 2005, 16, 1-15.

Frylinck L., van Wyk G. L., Smith T. P. L., Strydom P. E., van Marle-Köster E., Webb E. C., Koohmaraie M., Smith M. F., Evaluation of biochemical parameters and genetic markers for association with meat tenderness in South African feedlot cattle. Meat Sci., 2009, 83, 657-665.

Geesink G. H., Koohmaraie M., Postmortem proteolysis and calpain/calpastatin activity in callipyge and normal lamb biceps femoris during extended postmortem storage. J. Anim. Sci., 1999, 77, 1490-1501.

Geesink G. H., Taylor R. G., Bekhit A. E. D., Bickerstaffe R., Evidence against the non-enzymatic calcium theory of tenderization. Meat Sci., 2001, 59, 417-422.

Geesink G. H., Taylor R. G., Koohmaraie M., Calpain 3/p94 is not involved in postmortem proteolysis. J. Anim. Sci., 2005, 83, 1646-1652.

Geesink G. H., Kuchay S., Chishti A. H., Koohmaraie M., μ-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci., 2006, 84, 2834-2840.

Goll D. E., Thompson V. F., Li H., Wei W., Cong J., The calpain system. Physiol. Rev., 2003, 83, 731-801.

Hanna R. A., Campbell R. L., Davies P. L., Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature, 2008, 456, 409-412.

Homma N., Ikeuchi Y., Suzuki A., Levels of calpain and calpastatin in meat subjected to high pressure. Meat Sci., 1995, 41, 251-260.

Hope-Jones M., Strydom P. E., Frylinck L, Webb E. C., The efficiency of electrical stimulation to counteract the negative effects of β-agonists on meat tenderness of feedlot cattle. Meat Sci., 2010, 86, 699-705.

Hopkins D. L., Thompson J. M., Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination of free calcium levels. Meat Sci., 2001, 59, 199-209.

Houbak M. B., Ertbjerg P., Therkildsen M., In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and microcalpain. Meat Sci., 2008, 79, 77-85.

Huang M., Huang F., Xu X. L., Zhou G. H., Influence of caspase3 selective inhibitor on proteolysis of chicken skeletal muscle proteins during post mortem aging. Food Chem., 2009, 115, 181-186.

Huff-Lonergan E., Mitsuhashi T., Beekman D. D., Parrish F. C., Olson D. G., Robson R. M., Proteolysis of specific muscle structural proteins by μ-calpain at low pH and temperature is similar to degradation in post mortem bovine muscle. J. Anim. Sci., 1996, 74, 993-1008.

Hughes M. C., Geary S., Dransfield E., Mc Sweeney P. L. H., O'Neill E. E., Characterization of peptides released from rabbit skeletal muscle troponin-T by μ-calpain under conditions of low temperature and high ionic strength. Meat Sci., 2001, 59, 61-69.

Hwang I. H., Thompson J. M., The effect of time and type of electrical stimulation on the calpain system and meat tenderness in beef longissimus dorsi muscle. Meat Sci., 2001, 58, 135-144.

Ilian M. A., Morton J. D., Kent M. P., Le Couteur C. E., Hickford J., Cowley R., Bickerstaffe R., Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains. J. Anim. Sci. 2001, 79, 122-132.

Ilian M. A., Bekhit A. E., Bickerstaffe R., The relationship between meat tenderization, myofibril fragmentation and autolysis of calpain 3 during post-mortem ageing. Meat Sci., 2004a, 66, 387-397.

Ilian M. A., Bekhit A. E., Stevenson B., Morton J. D., Isherwood P., Bickerstaffe R., Up- and down- regulation of longissimus tenderness parallels changes in the myofibril-bound calpain 3 protein. Meat Sci., 2004b, 67, 433-445.

Ilian M. A., Bickerstaffe R., Greaser M. L., Postmortem changes in myofibrillar-bound calpain 3 revealed by immunofluorescence microscopy. Meat Sci. 2004c, 66, 231-240.

Jakubiec-Puka A., The role of proteolytic calpain system in animal cell. Post. Biochem., 1993, 39, 251-258 (in Polish).

Jeacocke R. E., The concentrations of free magnesium and free calcium ions both increase in skeletal muscle fibres entering rigor mortis. Meat Sci., 1993, 35, 27-45.

Kanawa R., Ji J.-R., Takahashi K., Inactivity of μ-calpain throughout post mortem aging of meat. J. Food Sci., 2002, 67, 635-638.

Kemp C. M., Bardsley R. G., Parr T., Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. J. Anim. Sci., 2006, 84, 2841-2846.

Kemp C. M., Sensky P. L., Bardsley R. G., Buttery P. J., Parr T., Tenderness - An enzymatic view. Meat Sci., 2010, 84, 248-256.

Kent M. P., Spencer M. J., Koohmaraie M., Postmortem proteolysis is reduced in transgenic mice overexpressing calpastatin. J. Anim. Sci., 2004, 82, 794-801.

Kołczak T., Influence postmortem factors on beef tenderness. Gosp. Mięsna, 2000, 5, 28-31 (in Polish).

Koohmaraie M., The role of endogenous proteases in meat tenderness. 1988, in: Proceedings of 41st Annual Reciprocal Meat Conference, Wyoming, USA, pp. 89-100.

Koohmaraie M., The role of Ca+2 - dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie, 1992, 74, 239-245.

Koohmaraie, M., Ovine skeletal muscle multicatalytic proteinase complex (proteasome): purification, characterization, and comparison of its effect on myofibrils with μ-calpain. J. Anim. Sci., 1992b, 70, 3697-3708.

Koohmaraie M., Muscle proteinases and meat ageing. Meat Sci., 1994, 36, 93-104.

Koohmaraie M., Biochemical factors regulating the toughening and tenderisation processes of meat. Meat Sci., 1996, 43, 193-201.

Koohmaraie M., Kent M. P., Shackelford S. D., Veiseth E., Wheeler T. L., Meat tenderness and muscle growth: is there any relationship? Meat Sci., 2002, 62, 345-352.

Koohmaraie M., Geesink G. H., Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci., 2006, 74, 34-43.

Korzeniewska-Dyl I., Caspases - structure and function. Pol. Merk. Lek., 2007, 138, 403-407 (in Polish).

Korzeniowski W., Nowak D., Ostoja H., The role of proteolytic enzymes to improve the meat tenderness. Gosp. Mięsna, 1998, 8, 40-43 (in Polish).

Kumamoto T., Kleese W. C., Cong J., Goll D. E., Pierce P. R., Allen R. E., Localization of the Ca+2 - dependent proteinases and their inhibitor in normal, fasted and denervated rat skeletal muscle. Anat. Rec., 1992, 232, 60-77.

Kurebayashi N., Harkins A. B., Baylor S.,M., Use of fura red as an intracellular calcium indicator in frog skeletal muscle fibers. Biophys. J., 1993, 64, 1934-1960.

Lee S., Polidori P., Kaufman R. G., Kim B. C., Low-voltage electrical stimulation effects on proteolysis and lamb tenderness. J. Food Sci., 2000, 65, 786-790.

Lusk J. L., Fox J. A., Schroeder T. C., Mintert J., Koohmaraie M., In-store valuation of steak tenderness. Am. J. Agr. Econ., 2001, 83, 539-550.

Maribo H., Ertbjerg P., Andersson M., Barton-Gade P., Møller A. J., Electrical stimulation of pigs - effect on pH fall, meat quality and Cathepsin B+L activity. Meat Sci., 1999, 52, 179-187.

Meyers S. N., Beever J. E., Investigating the genetic basis of pork tenderness: Genomic analysis of porcine CAST. Anim. Genet., 2008, 39, 531-543.

Miller M. F., Carr M. F., Ramsey C. B., Crockett K. L., Hoover L. C., Consumer thresholds for establishing the value of beef tenderness. J. Anim. Sci., 2001, 79, 3062-3068.

Moldoveanu T., Gehring K., Green D. R., Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature, 2008, 456, 404-408.

Moudilou E. N., Mouterfi N., Exbrayat J. M., Brun C., Calpains expression during Xenopus laevis development. Tissue Cell, 2010, 42, 275-281.

Morgan J. B., Miller R. K., Mendez F. M., Hale D. S., Savell J. W., Using calcium chloride injection to improve tenderness of beef from mature cows. J. Anim. Sci., 1991, 69, 4469-4476.

Morton J. D., Bickerstaffe R., Kent M. P., Dransfield E., Keeley G. M., Calpain-calpastatin and toughness in M. Longissimus from electrically stimulated lamb and beef carcasses. Meat Sci., 1999, 52, 71-79.

Neath K. E., Del Barrio A. N., Lapitan R. M., Herrera J. R. V., Cruz L. C., Fujihara T., Muroya S., Chikuni K., Hirabayashi M., Kanai Y., Protease activity higher in postmortem water buffalo meat than Brahman beef. Meat Sci., 2007, 77, 389-396.

Northcutt J. K., Pringle T. D., Dickens J. A., Buhr R. J., Young L. L., Effects of age and tissue type on the calpain proteolytic system in turkey skeletal muscle. Poultry Sci., 1998, 77, 367-372.

Nowak D., Korzeniowski W., Influence modified conditions of ripening on meat tenderness and structural changes in skeletal muscle. Fleischwirtschaft, 2004, 10, 100-103 (in German, English abstract).

Nowak D., Methods for improving the tenderness of beef - influence metal ions and temperatures. Fleischwirtschaft, 2005, 11, 109-111 (in German, English abstract).

Olsson U., Hertzman C., Tornberg E., The influence of low temperature, type of muscle and electrical stimulation on the course of rigor mortis, ageing and tenderness of beef muscles. Meat Sci., 1994, 37, 115-131.

Ouali A., Hernan Herrera-Mendez C., Coulis G., Becila S., Boudjellal A., Aubry L., Sentandreu M. A., Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci., 2006, 74, 44-58.

Parr T., Sensky P. L., Scothern G. P., Bardsley R. G., Buttery P. J., Wood J. D., Warkup C., Relationship between skeletal muscle - specific calpain and tenderness of conditioned porcine longissimus muscle. J. Anim. Sci., 1999, 77, 661-668.

Purslow P. P., Ertbjerg P., Baron C. P., Christensen M., Lawson M. A., Patterns of variation in enzyme activity and cytoskeletal proteolysis in muscle. 2001, in: 47th ICoMST, pp. 38-43.

Rees M. P., Trout G. R., W arner R. D., Effect of calcium infusion on tenderness and ageing rate of pork m. longissimus thoracis et lumborum after accelerated boning. Meat Sci., 2002, 61, 169-179.

Sentandreu M. A., Coulis G., Ouali A., Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci. Tech., 2002, 13, 400-421.

Shackelford S. D., Wheeler T. L., Meade M. K., Reagan J. O., Byrnes B. L., Koohmaraie M., Consumer impressions of Tender Select beef. J. Anim. Sci., 2001, 79, 2605-2614.

Soares G. J. D., Areas J. A. G., Effect of electrical stimulation on post mortem biochemical characteristics and quality of longissimus dorsi thoracis muscle from buffalo (Bubalus bubalis). Meat Sci., 1995, 41, 369-379.

Steen D., Claeys E., Uytterhaegen L., De Smet S., Demeyer D., Early post-mortem conditions and the calpain/calpastatin system in relation to tenderness of double-muscled beef. Meat Sci., 1997, 45, 307-319.

Takahashi K., Structural weakening of skeletal muscle tissue during post-mortem ageing of meat: the non-enzymatic mechanism of meat tenderization. Meat Sci., 1996, 43, 67-80.

Taylor R. G., Geesing G. H., Thompson V. F., Koohmaraie M., Goll D. E., Is Z-disk degradation responsible for post mortem tenderization? J. Anim. Sci., 1995a, 73, 1351-1367.

Taylor R. G., Tassy C., Briand M., Robert N., Briand Y., Ouali A., Proteolytic activity of proteasome on myofibrillar structures. Mol. Biol. Rep., 1995b, 21, 71-73.

Thomson B. C., Dobbie P. M., Singh K., Speck P. A., Post-mortem kinetics of meat tenderness and the components of the calpain system in bull skeletal muscle. Meat Sci., 1996, 44, 151-157.

Tornberg E., Biophysical aspects of meat tenderness. Meat Sci., 43, 1996, 175-191.

Veeramuthu G. I., Sams A. R., Post mortem pH, myofibrillar fragmentation, and calpain activity in Pectoralis from electrically stimulated and muscle tensioned broiler carcasses. Poultry Sci., 1999, 78, 272-276.

Whipple G., Koohmaraie M., Degradation of myofibril proteins by extractable lysosomal enzymes and m-calpain, and the effects of zinc chloride. J. Anim. Sci., 1991, 69, 4449-4460.

White S. N., Casas E., Wheeler T. L., Shackelford S. D., Koohmaraie M., Riley D. G., Chase C. C., Johnson D. D., Keele J. W., Smith T. P. L., A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J. Anim. Sci., 2005, 83, 2001-2008.

Xian-Xing Xu, Xue Shui, Zhi-Hang Chen, Cheng-Qi Shan, Yu-Nan Hou, Yuan-Guo Cheng, Development and application of a real-time PCR method for pharmacokinetic and biodistribution studies of recombinant adenovirus. Mol Biotechnol., 2009, 43, 130-137.

Zór K., Ortiz R., Saatci E., Bardsley R., Parr T., Csöregi E., Nistor M., Label free capacitive immunosensor for detecting calpastatin - a meat tenderness biomarker. Bioelectrochemistry, 2009, 76, 93-99.

Polish Journal of Food and Nutrition Sciences

The Journal of Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn

Journal Information

IMPACT FACTOR 2017: 1.697
5-year IMPACT FACTOR: 1.760

CiteScore 2017: 1.95

SCImago Journal Rank (SJR) 2017: 0.651
Source Normalized Impact per Paper (SNIP) 2017: 1.113


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 565 565 135
PDF Downloads 275 275 127