Influence of Chemically-Modified Potato Starch (RS Type 4) on the Nutritional and Physiological Indices of Rats

Influence of Chemically-Modified Potato Starch (RS Type 4) on the Nutritional and Physiological Indices of Rats

A biological study was undertaken to analyse the metabolic effect of feeding rats with an experimental diet in which cellulose was substituted with 20% contribution of chemically-modified potato starches (subjected to oxidation, esterification, cross-linking and dual modification). Caecum digesta mass was significantly higher in rats fed the experimental potato starch preparations compared to control group. Luminal ammonia concentration and pH of caecal or colonic content were lower as an effect of diets with all the investigated preparations. Compared to the cellulose-containing diet (control), all modified potato starch preparations raised the content of SCFA in caecum digesta when fed to rats. Significant lowering of the levels of triacylglycerols and total cholesterol was noticed for all chemically-modified starch preparations. The activity of β-glucuronidase determined upon the administration of potato starch preparations into rat diets was significantly lower as compared to the control diet. The results indicate that the chemically-modified potato starch preparations are a good substrate for the intestinal microecosystem and may promote the beneficial status of the gastrointestinal tract of rats.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Annison G., Illman R. J., Topping D. L., Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J. Nutr., 2003, 133, 3523-3528.

  • AOAC, Official Methods of Analysis. (15th ed.). 1990, Arlington, Virginia, USA.

  • Bird A. R., Brown I. L., Topping D. L., Low and high amylase maize starches acetylated by a commercial or a laboratory process both deliver acetate to the large bowel of rats. Food Hydrocoll., 2006, 20, 1135-1140.

  • Cermak R., Minck K., Lawnitzak C., Scharrer E., Ammonia inhibits sodium and chloride absorption in rat distal colon. Exp. Physiol., 2002, 87, 311-319.

  • Champ M., Martin L., Noah L., Gratas M., Analytical methods for resistant starch. 1999, in: Complex Carbohydrates in Foods (eds. S. Sungsoo Cho, L. Prosky, M. Dreher). Marcel Dekker Inc., New York, pp. 184-187.

  • Clarke J. M., Bird A. R., Topping D. L., Cobiac L., Excretion of starch and esterified short-chain fatty acids by ileostomy subjects after the ingestion of acetylated starches. Am. J. Clin. Nutr., 2007, 86, 1146-1151.

  • Close B., Banister K., Baumans V., Bernoth E.-M., Bromage N., Bunyan J., Erhardt W., Flecknell P., Gregory N., Hackbarth H., Morton D., Warwick C., Recommendation for euthanasis of experimental animals: Part 2. Lab. Animals, 1997, 31, 1-32.

  • Cummings J. H., Macfarlane G. T., The control and consequences of bacterial fermentation in the human colon-a review. J. Appl. Bact., 1991, 70, 443-459.

  • De Deckere E. A. M., Kloots W. J., van Amelsvoort J. M. M., Resistant starch decreases serum total cholesterol and triacylglycerol concentrations in rats. J. Nutr., 1993, 123, 2142-2151.

  • Djouzi Z., Andrieux C., Compared effect of the three oligosaccharides on metabolism of intestinal microflora in rats with a human faecal flora. Brit. J. Nutr., 1997, 78, 313-324.

  • Ebihara K., Shiraishi R., Okuma K., Hydroxypropyl-modified potato starch increases fecal bile acid excretion in rats. J. Nutr., 1998, 128, 848-854.

  • Ferguson M. J., Jones G. P., Production of short-chain fatty acids following in vitro fermentation of saccharides, saccharide esters, fructo-oligosaccharides, starches, modified starches and nonstarch polysaccharides. J. Sci. Food Agr., 2000, 80, 166-170.

  • FAO/WHO, 1998, Carbohydrates in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation, 14-18 April 1997, 97-104.

  • Gallant D. J., Bouchet B., Buléon A., Pérez S., Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr., 1992, 46, suppl. 2, 3-16.

  • Hodgkinson A., Davis D., Fourman J., Robertson W. G., Roe F. J. C., A comparison of the effects of lactose and of two chemically modified waxy maize starches on mineral metabolism in the rat. Food Chem. Toxicol., 1982, 20, 371-382.

  • Hofirek B., Haas D., Comparative studies of ruminal fluid collected by stomach tube or by puncture of the caudoventral ruminal sac. Acta Vet. Brno, 2001, 70, 27-33.

  • Juśkiewicz J., Zduńczyk Z., Effects of cellulose, carboxymethylcellulose and inulin fed to rats as single supplements or in combinations on their caecal parameters. Comp. Biochem. Phys. A, 2004, 139, 513-519.

  • Kishida T., Nakai Y., Ebihara K., Hydroxypropyl-distarch phophate from tapioca starch reduces zinc and iron absorption, but not calcium and magnesium absorption, in rats. J. Nutr., 2001, 131, 294-300.

  • Kishida T., Nogami H., Ogawa H., Ebihara K., The hypocholesterolemic effect of high amylose cornstarch in rats is mediated by an enlarged bile acid pool and increased faecal bile acid excretion, not by caecal fermented products. J. Nutr., 2002, 132, 2519-2524.

  • Krupa-Kozak U., Juśkiewicz J., Wronkowska M., Soral-Śmietana M., Zduńczyk Z., Native and microwaved bean and pea starch preparations-physiological effects on the intestinal ecosystem, caecal tissue and serum lipids in rats. Brit. J. Nutr., 2010, 103, 1118-1126.

  • Lehmann U., Robin F., Slowly digestible starch-its structure and health implications: a review. Trends Food Sci. Tech., 2007, 18, 346-355.

  • Lopez H. W., Levrat-Verny M.-A., Coudray C., Besson C., Krespine V., Messager A., Demigné C., Rémésy C., Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats. J. Nutr., 2001, 131, 1283-1289.

  • Mallet A. K., Rowland I. R., Factors affecting the gut microflora. 1988, in: Role of the Gut Flora in Toxicity and Cancer. Academic Press, London, 347-382

  • Nugent A. P., Health properties of resistant starch. Brit. Nutr. Found. Bull., 2005, 30, 27-54.

  • Pastuszewska B., Kowalczyk J., Ochtabińska A., Dietary carbohydrates affect caecal fermentation and modify nitrogen excretion patterns in rats. II. Studies with diets differing in protein quality. Arch. Anim. Nutr., 2000, 53, 335-352.

  • Raben A., Andersen K., Karberg M. A., Holst J. J., Astrup A., Acetylation of or beta-cyclodextrin addition to potato: beneficial effect on glucose metabolism and appetite sensations. Am. J. Clin. Nutr., 1997, 66, 304-314.

  • Ranghotra G. S., Gelroth J. A., Leinen B. S., Hypolipidemic effects of resistant starch in hamster is not dose dependent. Nutr. Res., 1997, 17, 317-323.

  • Reddy B. S., Engle A., Simi B., Goldman M., Effect of dietary fiber on colonic bacterial enzymes and bile acids in relation to colon cancer. Gastroenterology, 1992, 102, 1475-1482.

  • Reeves P. G., Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr., 1997, 127, 838-841.

  • Rowland I., Tanaka R., The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human fecal microflora. J. Appl. Bacter., 1993, 74, 667-674.

  • Sacquet E., Leprince C., Riottot M., Effect of amylomaize starch on cholesterol and bile acid metabolisms in germfree (axenic) and conventional (holoxenic) rats. Repr. Nutr. Devel., 1983, 23, 783-792.

  • Silvester K. R., Englyst H. N., Cummings J. H., Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. Am. J. Clin. Nutr., 1995, 62, 403-411.

  • Silvi S., Rumney C. J., Cresci A., Rowland I. R., Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J. Appl. Microbiol., 1999, 86, 521-530.

  • Soral-Śmietana M., Wronkowska M., Resistant starch of pea origin. Żywność. Nauka. Technologia. Jakość, 2000, 23, 204-212.

  • Til H. P., Feron V. J., Immel H. R., Vogel W. F., Chronic (89-week) feeding study with hydroxypropyl distarch phosphate, starch acetate, lactose and sodium alginate in mice. Food Chem. Toxicol., 1986, 24, 825-834.

  • Topping D. L., Clifton P. M., Short chain fatty acids and human colonic function: roles of resistant starch and non-starch polysaccharides. Phys. Rev., 2001, 81, 1031-1064.

  • Wolf B. W., Bauer L. L., Fahey G. C., Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch. J. Agr. Food Chem., 1999, 47, 4178-4183.

  • Wolf B. W., Woelver T. M. S., Bolognesi C., Zinker B. A., Garleb K. A., Firkins J. F., Glycemic response to a food starch estrified by 1-octenyl succinic anhydride in humans. J. Agr. Food Chem., 2001, 49, 2674-2678.

  • Woo K. S., Seib P. A., Cross-linked resistant starch: preparation and properties. Cereal Chem., 2002, 79, 819-825.

  • Wronkowska M., Juśkiewicz J., Soral-Śmietana M., Nutritional and physiological effects of native and physically-modified starches of different origin on rats. Pol. J. Food Nutr. Sci., 2002, 11/52, SI 1, 62-67.

  • Wronkowska M., Soral-Śmietana M., Krupa U., Chapter 9: In vitro hydrolysed chemically modified potato starch-binding of cholesterol and bile acids. 2008, in: Starch: Recent Progress in Biopolymer and Enzyme Technology (eds. P. Tomasik, E. Bertoft, A. Blennow). Polish Society of Food Technologists. Cracow, pp. 123-130.

  • Wurzburg O. B., Nutritional aspects and safety of modified food starches. Nutr. Rev., 1986, 44, 74-79.

  • Younes H., Demigne C., Behr S., Remesy C., Resistant starch exerts a lowering effect on plasma urea by enhancing urea N transfer into the large intestine. Nutr. Res., 1995, 15, 1199-1210.

OPEN ACCESS

Journal + Issues

Search