Effect of food types on competitive interaction between Aedes aegypti (LINNAEUS, 1762) and Ae. albopictus (SKUSE, 1894) (Diptera, Culicidae): a proximate level appraisal

Sampa Banerjee 1 , Sushree Mohan 1 , Soujita Pramanik 1 , Soumyajit Banerjee 2 , Goutam K. Saha 1 ,  and Gautam Aditya 1
  • 1 Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, , Kolkata , India
  • 2 P.G. Department of Zoology, Serampore College, , Serampore , India


Competitive interactions between coexisting Aedes aegypti and Ae. albopictus have been implied as a crucial factor shaping life history traits and population characteristics. The overlap in resource requirements and similarities in the life history strategies of the two Aedes mosquitoes form a basis for competitive interactions. In the present study, the role of the food quality of the larval habitats in influencing the outcome of competition between Ae. aegypti and Ae. albopictus is evaluated to highlight food quality as a basis for asymmetric competitive outcomes. Instar I larvae of the two mosquitoes were reared using conspecifics or heterospecifics of constant size and equal ratio with four different food types: boiled rice, boiled pulses, a mixture of boiled rice and pulses, and fish food. Competitive interactions were evaluated using age at pupation (AP), pupal weight (PW), dry adult weight (AW) and wing length (WL) with respect to intra- and interspecific competition for the two sexes of each mosquito species. The results show that Ae. albopictus developed faster but achieved a smaller size compared to Ae. aegypti under interspecific competition conditions, the extent of the difference varying significantly with the food type. Given the variety of food resources available in the small container larval habitats, the results of the study imply that food quality may act differentially with respect to larval development and adult body size, depending on the conspecifics or heterospecifics and on the sex of the species concerned. The dominance of one species over the other may also be a consequence of the resource utilization pattern that varies in the larval habitats.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ADDINSOFT SARL 2010. XLSTAT software, Version 10.0. Paris, France.

  • AGNEW P., HAUSSY C., MICHALAKIs Y. 2000. Effects of density and larval competition on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology 37(5): 732-755.

  • AGNEW P., HIDE M., SIDOBRE C., MICHALAKIS Y. 2002. A minimalist approach to the effects of density dependent competition on insect life history traits. Ecological Entomology 27(4): 396-402.

  • ALTO B.W., BETTINARDI D.J., ORTIZ S. 2015. Interspecific larval competition differentially impacts adult survival in dengue vectors. Journal of Medical Entomology 52(2): 163-170

  • ALTO B.W., LOUNIBOS L.P., MORES C.N., REISKIND M.H. 2008a. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proceedings of the Royal Society B 275(1633): 463-471.

  • ALTO B.W., REISKIND M.H., LOUNIBOS L.P. 2008b. Size alters susceptibility of vectors to dengue virus infection and dissemination. The American Journal of Tropical Medicine and Hygiene 79(5): 688-695.

  • AMBRUSTER P., HUTCHINSON R.A. 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology 39(4): 699-704.

  • ARRIVILLAGA J., BARRERA R. 2004. Food as a limiting factor for Aedes aegypti in water-storage containers. Journal of Vector Ecology 29(1): 11-20.

  • BANERJEE S., ADITYA G., SAHA G.K. 2013a. Pupal productivity of dengue vectors in Kolkata, India: implications for vector management. Indian Journal of Medical Research 137(3): 549-559.

  • BANERJEE S., ADITYA G., SAHA G.K. 2013b. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste Management 33(1): 233-239.

  • BANERJEE S., ADITYA G., SAHA G.K. 2015a. Household wastes as larval habitats of dengue vectors: comparison between urban and rural areas of Kolkata, India. PLoS ONE 10(10): e0138082.

  • BANERJEE S., MOHAN S., SAHA N., MOHANTY S.P., SAHA G.K., ADITYA G. 2015b. Pupal productivity & nutrient reserves of Aedes mosquitoes breeding in sewage drains & other habitats of Kolkata, India: implications for habitat expansion & vector management. Indian Journal of Medical Research 142(Supl. 1): 87-94.

  • BARA J., RAPTI Z., CÁCERES C.E., MUTURI E.J. 2014. Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for dengue virus. PLoS ONE 10(5): e0126703.

  • BARRERA R. 1996. Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecological Entomology 21(2): 117-127.

  • BÉDHOMME S., AGNEW P., SIDOBRE C., MICHALAKIS Y. 2005. Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae. Ecological Entomology 30(1): 1-7.

  • BLACK W.C. IV, RAI K.S., TURCO B.J., ARROYO D.C. 1989. Laboratory study of competition between United States strains of Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 26(4): 260-271.

  • BRADSHAW W.E., HOLZAPFEL C.M. 1992. Reproductive consequences of density-dependent size variations in the pitcher plant mosquito, Wyeomyia smithii (Diptera: Culicidae). Annals of Entomological Society of America 85: 274-281.

  • BRAKS M.A.H., HONÓRIO N.A., LOUNIBOS L.P., LOURENÇO-DE-OLIVEIRA R., JULIANO S.A. 2004.Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Annals of Entomological Society of America 97(1): 130-139.

  • BRIEGEL H. 1990. Metabolic relationship between female body size, reserves, and fecundity in Aedes aegypti. Journal of Insect Physiology 36(3): 165-172.

  • BRIEGEL H., HӦRLER E. 1993. Multiple blood meals as a reproductive strategy in Anopheles (Diptera: Culicidae). Journal of Medical Entomology 30(6): 975-985.

  • BRIEGEL H., TIMMERMANN S.E. 2001. Aedes albopictus (Diptera: Culicidae): physiological aspects of development and reproduction. Journal of Medical Entomology 38(4): 566-571.

  • BROADIE K.S., BRADSHAW W.E. 1991. Mechanisms of interference competition in the Western treehole mosquito, Aedes sierrensis. Ecological Entomology 16(2): 145-154.

  • BURKE R., BARRERA R., LEWIS M., KLUCHINSKY T., CLABORN D. 2010. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Medical and Veterinary Entomology 24(2): 117-123.

  • CLEMENTS A.N. 1992. The biology of mosquitoes: development, nutrition and reproduction. Chapman & Hall, London.

  • COURET J., DOTSON E., BENEDICT M.Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE 9(2): e87468.

  • DAUGHERTY M.P., ALTO B.W., JULIANO S.A. 2000. Invertebrate carcasses as a resource for competing Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 37(3): 364-372.

  • EWING D.A., COBBOLD C.A., PURSE B.V., NUNN M.A., WHITE S.M. 2016. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. Journal of Theoretical Biology 400(7): 65-79.

  • GAVOTTE L., MERCER D.R., VANDYKE R., MAINS J.W., DOBSON S.L. 2009. Wolbachia infection and resource competition effects on immature Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 46(3): 451-459.

  • GILLES J.R.L., LEES R.S., SOLIBAN S.M., BENEDICT M.Q. 2011. Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. Journal of Medical Entomology 48(2): 296-304.

  • GRIMSTAD P.R., WALKER E.D. 1991. Aedes triseriatus (Diptera: Culicidae) and La Crosse virus. IV. Nutritional deprivation of larvae affects the adult barriers to infection and transmission. Journal of Medical Entomology 28(3): 378-386.

  • HO B.C., EWERT A., CHEW L. 1989. Interspecific competition among Aedes aegypti, Ae. albopictus, and Ae. triseriatus (Diptera: Culicidae): larval development in mixed cultures. Journal of Medical Entomology 26(6): 615-23.

  • JULIANO S.A. 1998. Species introduction and replacement among mosquitoes: interspecific resource competition or apparent competition? Ecology 79(1): 255-268.

  • JULIANO S.A. 2009. Species interactions among larval mosquitoes: context dependence across habitat gradients. Annual Review of Entomology 54: 37-56.

  • JULIANO S.A. 2010. Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Israel Journal of Ecology and Evolution 56(3-4): 1-26.

  • JULIANO S.A., LOUNIBOS L.P., O’MEARA G.F. 2004. A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: differences between sites of coexistence and exclusion? Oecologia 139(4): 583-593.

  • JULIANO S.A., O’MEARA G.F., MORRILL J.R., CUTWA M.M. 2002. Desiccation and thermal toleranceof eggs and the coexistence of competing mosquitoes. Oecologia 130(3) 458-469.

  • JULIANO S.A., RIBEIRO G.S., MACIEL-DE-FREITAS R., CASTRO M.G., CODEÇO C., LOURENÇO-DEOLIVEIRA R., LOUNIBOS LP. 2014. She’s a femme fatale: low-density larval development produces good disease vectors. Memórias Do Instituto Oswaldo Cruz Rio de Janeiro 109(8): 1070-1077.

  • KAMGANG B., HAPPI J.Y., BOISIER P., NJIOKOU F., HERVÉ J.P., SIMARD F., PAUPY C. 2010. Geographic and ecological distribution of dengue and chikungunya virus vectors, Aedes aegypti and Aedes albopictus, in urban environments of Cameroon (Central Africa). Medical and Veterinary Entomology 24(2): 132-141.

  • KIRBY M.J., LINDSAY S.W. 2009. Effect of temperature and inter-specific competition on the development and survival of Anopheles gambiae sensu stricto and An. arabiensis larvae. Acta Tropica 109(2): 118-123.

  • LEGROS M., LLOYD A.L., HUANG Y., GOULD F. 2009. Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. Journal of Medical Entomology 46(3): 409-419.

  • LORD C.C. 1998. Density dependence in larvae of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 35(5): 825-829.

  • LOUNIBOS L.P., SUÁREZ S., MENÉNDEZ Z., NISHIMURA N., ESCHER R.L., O’CONNELL S.M., REY J.R. 2002. Does temperature affect the outcome of larval competition between Aedes aegypti and Aedes albopictus? Journal of Vector Ecology 27(1): 86-95.

  • MEDRONHO R.A., MACRINI L., NOVELLINO D.M., LAGROTTA M.T.F., CÂMARA V.M., PEDREIRA C.E. 2009. Aedes aegypti immature forms distribution according to type of breeding site. The American Journal of Tropical Medicine and Hygiene 80(3): 401-404.

  • MERRITT R.W., DADD R.H., WALKER E.D. 1992. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annual Review of Entomology 37: 349-376.

  • MOHAN S., BANERJEE S., MOHANTY S.P., SAHA G.K., ADITYA G. 2014. Assessment of pupal productivity of Aedes and co-occurring mosquitoes in Kolkata, India. Southeast Asian Journal of Tropical Medicine and Public Health 45(6): 1279-1291.

  • MOORE C.G., FISHER B.R. 1969. Competition in mosquitoes. Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant. Annals of the Entomological Society of America 62(6): 1325-1331.

  • MUNSTERMANN L.E., CONN J.E. 1997. Systematics of mosquito disease vectors (Diptera, Culicidae): Impact of molecular biology and cladistic analysis. Annual Review of Entomology 42: 351-369.

  • MURRELL E.G., JULIANO S.A. 2008. Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 45(3): 375-383.

  • MUTURI E.J., BLACKSHEAR M. Jr., MONTGOMERY A. 2012. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. Journal of Vector Ecology 37(1): 154-161.

  • O’MEARA G.F., EVANS L.F., GETTMAN A.D., CUDA J.P. 1995. Spread of Aedes albopictus and decline of Aedes aegypti (Diptera: Culicidae) in Florida. Journal of Medical Entomology 32(4): 554-562.

  • PADMANABHA H., BOLKER B., LORD C.C., RUBIO C., LOUNIBOS L.P. 2011. Food availability alters the effects of larval temperature on Aedes aegypti growth. Journal of Medical Entomology 48(5): 974-984.

  • PAULSON S.L., HAWLEY W.A.1991. Effect of body size on the vector competence of field and laboratory population of Aedes triseriatus for La Crosse virus. Journal of American Mosquito Control Association 7(2): 170-175.

  • REISKIND M.H., LOUNIBOS L.P. 2009. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Medical and Veterinary Entomology 23(1): 62-68.

  • RENSHAW M., SERVICE M.W., BIRLEY M.H. 1994. Size variation and reproductive success in the mosquito Aedes cantans. Medical and Veterinary Entomology 8(2): 179-186.

  • REY J.R., NISHIMURA N., WAGNER B., BRAKS M.A.H., O’CONNELL S.M., LOUNIBOS L.P. 2006. Habitat segregation of mosquito arbovirus vectors in south Florida. Journal of Medical Entomology 43(6):1134-1141.

  • SUMANOCHITRAPON W., STRICKMAN D., SITHIPRASASNA R., KITTAYAPONG P., INNIS B.L. 1998. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. American Journal of Tropical Medicine and Hygiene 58(3): 283-286.

  • TAKKEN W., KLOWDEN M.J., CHAMBERS G.M. 1998. Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae) the disadvantage of being small. Journal of Medical Entomology 35(5): 639-445.

  • TSURIM I., SILBERBUSH A., OVADIA O., BLAUSTEIN L., MARGALITH Y. 2013. Inter- and intra-specific density-dependent effects on life history and development strategies of larval mosquitoes. PLoS ONE 8(3): e57875.

  • VEZZANI D., SCHWEIGMANN N., 2002. Suitability of containers from different sources as breeding sites of Aedes aegypti (L.) in a cemetery of Buenos Aires city, Argentina. Memórias do Instituto Oswaldo Cruz 97(6): 789-792.

  • WALKER E.D., O’MEARA G.F., MORGAN W.T. 1996. Bacterial abundance in larval habitats of Aedes albopictus (Diptera: Culicidae) in a Florida cemetery. Journal of Vector Ecology 21(2): 173-177.

  • WESTBROOK C.J., REISKIND M.H., PESKO K.N., GREENE K.E., LOUNIBOS L.P. 2010. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne and Zoonotic Disease 10(3): 241-247.

  • YEE D., KESAVARAJU B., JULIANO S.A. 2004. Interspecific differences in feeding behavior and survival under food-limited conditions for larval Aedes albopictus and Aedes aegypti (Diptera: Culicidae). Annals of the Entomological Society America 97(4): 720-728.

  • YEE D.A., KAUFMAN M.G., JULIANO S.A. 2007. The significance of ratios of detritus types and microorganism productivity to competitive interactions between aquatic insect detritivores. Journal of Animal Ecology 76(6): 1105-1115.

  • ZAR J.H. 1999. Biostatistical analysis (fourth edition). Prentice Hall, Englewood Cliffs (NJ).


Journal + Issues