Symbiotic microorganisms of the leafhopper Deltocephalus pulicaris (Fallén, 1806) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae): molecular characterization, ultrastructure and transovarial transmission

Open access

Abstract

The ovaries of the leafhopper Deltocephalus pulicaris are accompanied by large organs termed bacteriomes, which are composed of numerous polyploid cells called bacteriocytes. The cytoplasm of bacteriocytes is tightly packed with symbiotic microorganisms. Ultrastructural and molecular analyses have revealed that bacteriocytes of D. pulicaris contain two types of symbionts: the bacterium “Candidatus Sulcia muelleri” and the bacterium “Candidatus Nasuia deltocephalinicola”. Both symbionts are transovarially transmitted from the mother to the next generation.

Baumann P. 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annual Review of Microbiology 59: 155–189.

Baumann P. 2006. Diversity of prokaryote-insect associations within the Sternorrhyncha (psyllids, whiteflies, aphids, mealybugs). [in]: T.A. Miller, K. Bourtzis (eds.). Insect Symbiosis, Vol. 2. Contemporary Topics in Entomology Series, CRC, Boca Raton, 1–24.

Bennett G.M., Moran N.A. 2013. Small, smaller, smallest: the origin and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biology and Evolution 5(9): 1675–1688.

Bennett G.M., McCutcheon J.P., McDonald B.R., Romanovicz D., Moran N.A. 2014. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 5(5): e01697-14.

Bigliardi E., Sacchi L., Genchi M., Alma A., Pajoro M., Daffonchio D., Marzorati M., Avanzati A.M. 2006. Ultrastructure of a novel Cardinium sp. symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). Tissue and Cell 38(4): 257–261.

Biliński S. 1998. Introductory remarks. Folia Histochemica et Cytobiologica 36(4): 143–145.

Buchner P. 1925. Studien an intracellularen Symbionten. V. Die symbiotischen Einrichtungen der Zikaden. Zeitschrift für Morphologie und Ökologie der Tiere 4(1): 88–245.

Buchner P. 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York – London – Sydney.

Büning J. 1994. The ovary of Ectognatha, the insects s.str. [in]: J. Büning (ed.). The Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution. Chapman and Hall, London, 31–305.

Cheng D.J., Hou R.F. 2001. Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stål (Homoptera, Delphacidae). Tissue and Cell 33(3): 273–279.

Douglas A.E. 1998. Nutritional Interactions in Insect-Microbial Symbioses: Aphids and Their Symbiotic Bacteria Buchnera. Annual Review of Entomology 43(1): 17–37.

Douglas A.E. 2003. The nutritional physiology of aphids. Advances in Insect Physiology 31: 73–140.

Douglas A.E. 2006. Phloem sap feeding by animals: problems and solutions. Journal of Experimental Botany 57(4): 747–754.

Hall T.A. 1999. BIOEDIT: an user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Ishii Y., Matsuura Y., Kakizawa S., Nikoh N., Fukatsu T. 2013. Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Applied and Environmental Microbiology 79(16): 5013–5022.

Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes and Environments 24(3): 195–204.

Kobiałka M., Michalik A., Walczak M., Junkiert Ł., Szklarzewicz T. 2015. Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma (early view), doi: 10.1007/s00709-015-0854-x.

Koga R., Moran N.A. 2014. Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. International Society for Microbial Ecology Journal 8(6): 1237–1246.

Koga R., Bennett G.M., Cryan J.R., Moran N.A. 2013. Evolutionary replacement of symbionts in an ancient and diverse insect lineage. Environmental Microbiology 15(7): 2073–2081.

Kuechler S.M., Dettner K., Kehl S. 2010. Molecular characterization and localization of the obligate endosymbiotic bacterium in the birch catkin bug Kleidocerys resedae (Heteroptera: Lygaeidae, Ischnorhynchinae). Microbiology Ecology 73(2): 408–418.

Kuechler S.M., Dettner K., Kehl S. 2011. Characterization of an obligate intracellular bacterium in the midgut epithelium of the bulrush bug Chilacis typhae (Heteroptera, Lygaeidae, Artheneinae). Applied and Environmental Microbiology 77(9): 2869–2876.

Marzorati M., Alma A., Sacchi L., Pajoro M., Palermo S., Brusetti L., Raddadi N., Balloi A., Tedeschi R., Clementi E., Corona S., Quaglino F., Bianco P.A., Beninati T., Bandi C., Daffonchio D. 2006. A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of flavescence dorée in Vitis vinifera. Applied and Environmental Microbiology 72(2): 1467–1475.

Matsuura Y., Kikuchi Y., Hosokawa T., Koga R., Meng X.Y., Kamagata Y., Nikoh N., Fukatsu T. 2012. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. International Society for Microbial Ecology Journal 6(2): 397–409.

McCutcheon J.P., Moran N.A. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proceedings of the National Academy of Sciences 104(49): 19392–19397.

McCutcheon J.P., Moran N.A. 2010. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biology and Evolution 2: 708–718.

McCutcheon J.P., McDonald B.R., Moran N.A. 2009. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proceedings of the National Academy of Sciences 106(36): 15394–15399.

Michalik A., Jankowska W., Szklarzewicz T. 2009. Ultrastructure and transovarial transmission of endosymbiotic microorgansms in Conomelus anceps and Metcalfa pruinosa (Insecta, Hemiptera, Fulgoromorpha). Folia Biologica 57(3-4): 131–137.

Michalik A., Gołas A., Kot M., Wieczorek K., Szklarzewicz T. 2013. Endosymbiotic microorganisms in Adelges (Sacchiphantes) viridis (Insecta, Hemiptera, Adelgoidea: Adelgidae): Molecular characterization, ultrastructure and transovarial transmission. Arthropod Structure and Development 42(6): 531–538.

Michalik A., Jankowska W., Kot M., Gołas A., Szklarzewicz T. 2014a. Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Structure and Development 43(6): 579–587.

Michalik A., Szklarzewicz T., Jankowska W., Wieczorek K. 2014b. Endosymbiotic microorganisms of aphids (Hemiptera: Sternorrhyncha: Aphidoidea): Ultrastructure, distribution and transovarial transmission. European Journal of Entomology 111(1): 91–104.

Montlor C.B., Maxmen A., Purcell A.H. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27(2): 189–195.

Moran N.A., Dale C. 2006. Molecular interactions between bacterial symbionts and their hosts cells. Cell 126(3): 453–465.

Moran N.A., Dale C., Dunbar H., Smith W.A., Ochman H. 2003. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environmental Microbiology 5(2): 116–126.

Moran N.A., Tran P., Gerardo N.M. 2005. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Applied and Environmental Microbiology 71(12): 8802–8810.

Müller H.J. 1962. Neuere Vorstellungen über Verbreitung und Phylogenie der Endosymbiosen der Zikaden. Zeitschrift für Morphologie und Ökologie der Tiere 51(2): 190–210.

Noda H. 1977. Histological and histochemical observation of intracellular yeast-like symbiotes in the fat body of the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Applied and Entomological Zoology 12(2): 134–141.

Noda H., Watanabe K., Kawai S., Yukuhiro F., Miyoshi T., Tomizawa M., Koizumi Y., Nikoh N., Fukatsu T. 2012. Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Applied and Entomological Zoology 47(3): 217–225.

Oliver K.M., Russell J.A., Moran N.A., Hunter M.S. 2003. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences 100(4): 1803–1807.

Rambaut A., Drummond A.J. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

Sacchi L., Genchi M., Clementi E., Bigliardi E., Avanzatti A.M., Pajoroi M., Negri I., Marzorati M., Gonella E., Alma A., Daffonchio D., Bandi C. 2008. Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): Details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue and Cell 40(4): 231–242.

Scarborough C.L., Ferrari J., Godfray H.C.J. 2005. Aphid protected from pathogen by endosymbiont. Science 310(5755): 1781.

Swiatoniowska M., Ogorzalek A., Golas A., Michalik A., Szklarzewicz T. 2013. Ultrastructure, distribution, and transovarial transmission of symbiotic microorganisms in Nysius ericae and Nithecus jacobaeae (Heteroptera: Lygaeidae: Orsillinae). Protoplasma 250(1): 325–332.

Szklarzewicz T., Moskal A. 2001. Ultrastructure, distribution and transmission of endosymbionts in the whitefly Aleurochiton aceris Modeer (Insecta, Hemiptera, Aleyrodinea). Protoplasma 218(1-2): 45–53.

Szklarzewicz T., Kędra K., Niżnik S. 2006. Ultrastructure and transovarial transmission of endosymbiotic microorganisms in Palaeococcus fuscipennis (Burmeister) (Insecta, Hemiptera, Coccinea: Monophlebidae). Folia Biologica 54(1-2): 69–74.

Szklarzewicz T., Michalik A., Czaja A., Szydłowska S. 2010. Germ cell cluster formation and ovariole structure in Puto albicans and Crypticerya morrilli (Hemiptera: Coccinea). Phylogenetic implications. European Journal of Entomology 107(4): 589–595.

Szklarzewicz T., Kalandyk-Kolodziejczyk M., Kot M., Michalik A. 2013. Ovary structure and transovarial transmission of endosymbiotic microorganisms in Marchalina hellenica (Insecta, Hemiptera, Coccomorpha: Marchalinidae). Acta Zoologica 94(2): 184–192.

Szklarzewicz T., Grzywacz B., Szwedo J., Michalik A. 2015. Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae). Protoplasma (early view), doi:10.1007/s00709-015-0817-2.

Takiya D.M., Tran P., Dietrich C.H., Moran N.A. 2006. Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Molecular Ecology 15(13): 4175–4191.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876–4882.

Urban J., Cryan J. 2012. Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evolutionary Biology 12: 87.

Wangkeeree J., Miller T.A., Hanboonsong Y. 2011. Predominant bacteria symbionts in the leafhopper Matsumuratettix hiroglyphicus – the vector of sugarcane white leaf phytoplasma. Bulletin of Insectology 64(Suppl.): 215–216.

Wu D., Daugherty S.C., Van Aken S.E., Pai G.H., Watkins K.L., Khouri H. 2006. Metabolic complementarity and genomics of the dual symbiosis of sharpshooters. PLoS Biology 4: e188.

Zahniser J.N., Dietrich C.H. 2013. A review of the tribes of Deltocephalinae (Hemiptera: Auchenorrhyncha: Cicadellidae). European Journal of Taxonomy 45: 1–211.

Polish Journal of Entomology

Polskie Pismo Entomologiczne; The Journal of Polish Entomological Society

Journal Information

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 24
PDF Downloads 59 59 5