Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites

Mingyu He 1 , Dilhumar Musajian 1 , Gvlmira Hasan 1 , Gongbo Hou 1 , and Mamatjan Yimit 1
  • 1 Xinjiang University, Key laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and chemical Engineering, Urumiqi, China


In this paper, the effects of coupling agent and lignin extracted from waste cotton stalks in Xinjiang on thermal-oxygen aging properties of polypropylene (PP) composites were studied. The melt index test and indoor thermal oxygen aging test was carried out on the samples treated with coupling agent. The mechanical properties, surface micromorphology, rheological properties and element composition of the materials before and after 30 days of aging were studied. The results showed that the titanate coupling agent was the best for improving the melt index and mechanical properties of PP/cotton stalk lignin composites. After the 30-day thermal oxygen aging test, the samples with 2% lignin had the best impact strength and retention rate of fracture elongation, reaching 68.9% and 77.3% respectively. The sample with 3% lignin content had the smoothen surface, no crack appeared. After aging, the increase of C=O was the least, and the crystal peak area decreased less.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zeng, H. & Li, C.J. (2019). Conversion of Lignin into High Value Chemical Products. DOI: 10.1007/978-1-4939-9060-3_1010.

  • 2. Thuraisingam, J., Mishra, P., Gupta, A., Soubam, T. & Piah, B.M. (2019). Novel natural rubber latex/lignin-based bio-adhesive: synthesis and its application on medium density fiber-board. Iranian Polymer J. DOI: 10.1007/s13726-019-00696-5.

  • 3. Pérez, I., Pasandín, A.R., Pais, J.C. & Pereira, P.A.A. (2019). Feasibility of using a lignin-containing waste in asphalt binders. Waste and Biomass Valorization. DOI: 10.1007/s12649-019-00590-4.

  • 4. Cho, M., Ko, F.K. & Renneckar, S. (2019). Impact of thermal oxidative stabilization on the performance of lignin-based carbon nanofiber mats. ACS Omega, 4(3), 5345–5355. DOI: 10.1021/acsomega.9b00278.

  • 5. Liqing, W. & Armando, M.D. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303. DOI: 10.3390/ma9040303.

  • 6. Pishnamazi, M., Casilagan, S., Clancy, C., Shirazian, S., Iqbal, J., Egan, D. & Collins, M.N. (2018). Microcrystalline Cellulose, Lactose and Lignin Blends: Process Mapping of Dry Granulation Via Roll Compaction, Powder Technol. DOI: 10.1016/j.powtec.2018.07.003.

  • 7. Pishnamazi, M., Iqbal, J., Shirazian, S., Walker, G.M. & Collins, M.N. (2019). Effect of lignin on the release rate of acetylsalicylic acid tablets. Internat. J. Biolog. Macromol., 124, 354–359. DOI: 10.1016/j.ijbiomac.2018.11.136.

  • 8. Pishnamazi, M., Ismail, H.Y., Shirazian, S., Iqbal, J. & Collins, M.N. (2019). Application of lignin in controlled release: development of predictive model based on artificial neural network for api release. Cellulose, 26(7). DOI: 10.1007/s10570-019-02522-w.

  • 9. Culebras, M., Geaney, H., Beaucamp, A., Upadhyaya, P., Dalton, E., Ryan, K.M. & Collins, M.N. (2019). Bio-derived Carbon Nanofibres from Lignin as High-Performance Li-Ion Anode Materials. Chem. Sus. Chem. 12(19), 4516–4521. DOI: 10.1002/cssc.201901562.

  • 10. Guo, J., Yang, Z. & Gao. Ch. (2019). Effect of polypropylene fiber on properties of aeolian-sand mortar. IOP Conference Series Mater. Sci. Engin. 472(1), 012087. DOI: 10.1088/1757-899X/472/1/012087.

  • 11. Mih, M., Mk, I. & Ahmed, F. (2018). Modification of cotton fiber with functionalized silane coupling agents vinyltriethoxysilane and aminopropyltriethoxysilane. J. Textile Sci. Engin. 08(03). DOI: 10.4172/2165-8064.1000361.

  • 12. Xiong, X., Yu, J., Xue, L., Zhang, C., Zha, Y. & Yi, G. (2017). Investigation of molecular structure and thermal properties of thermo-oxidative aged sbs in blends and their relations. Materials, 10(7), 768. DOI: 10.3390/ma10070768.

  • 13. Bajwa, D.S., Bajwa, S.G. & Holt, G.A. (2015). Impact of biofibers and coupling agents on the weathering characteristics of composites. Polym. Degrad. Stab. 120, 212–219. DOI: 10.1016/j.polymdegradstab.2015.06.015.

  • 14. Luis, Alberto, Mejía-Manzano, Bertha & A., et al. (2019). Improved extraction of the natural anticancerigen pristimerin from mortonia greggii root bark using green solvents and aqueous two-phase systems. Separ. Purificat. Technol. DOI: 10.1016/j.seppur.2018.08.056.

  • 15. Chinese national standardization administration. (2000). GB/T3682 – 2000. China.

  • 16. Chinese national standardization administration. (2000). GB/T1040.3 – 2006. China.

  • 17. Chinese national standardization administration. (2000). GB/T1043 – 2008. China.

  • 18. Rojek, B. & Wesolowski., M. (2018). FTIR and TG analyses coupled with factor analysis in a compatibility study of acetazolamide with excipients. Spectrochimica acta. Part A, Molec. Biomol. Spectrosc. DOI: 10.1016/j.saa.2018.10.020.

  • 19. Rachtanapun, P., Selke, S.E.M. & Matuana, L.M. (2004). Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends. J. Appl. Polymer Sci. 93(1), 364–371. DOI: 10.1002/app.20428.

  • 20. Duan, L.M., Ma, J.Z., Lyu, B., Lu, J. & Wu, X.H. (2016). Preparation and properties of nano-zno/modified hydrogenated castor oil composites. J. Mater. Engin. DOI: 10.11868/j.issn.1001-4381.2016.02.010.

  • 21. Ding, L., Rui, J. & Li, J. (0). The effect of nanoparticles modification on pla/nano-zno composite. Appl. Mech. Mater. DOI: 10.4028/www.scientific.net/AMM.420.230.

  • 22. Chen, G., Yang, Y., Zhou, C., Zhou, Z. & Yan, D. (2019). Thermal-oxidative aging performance and life prediction of polyethylene pipe under cyclic and constant internal pressure. J. Appl. Pol. Sci. DOI: 10.1002/app.47766.

  • 23. Caicedo, C., Edwin, A. & Murillo. (2019). Structural, thermal, rheological, morphological and mechanical properties of polypropylene functionalized in molten state with maleinized hyperbranched polyol polyester. Europ. Pol. J. DOI: 10.1016/j. eurpolymj.2019.06.005.

  • 24. Chen, X., Ma, Y., Cheng, Y., Zhang, A. & Liu, W. (2019). Enhanced mechanical and flame-resistant properties of polypropylene nanocomposites with reduced graphene oxide-functionalized ammonium polyphosphate and pentaerythritol. J. Appl. Pol. Sci. 136(41). DOI: 10.1002/app.48036.

  • 25. Zhou, Y., Pengfei, J.I., Zhang, K., Meidong, L.I. & Guan, Q. (2018). Micro-properties of modified asphalt based on relative molecular mass and thermal properties. J. Building Mater. 21(1), 159–164. DOI: 10.3969/j.issn.1007-9629.2018.01.026.

  • 26. Yan, L.T. & Sheng, J. (2006). Analysis of phase morphology and dynamics of immiscible pp/pa1010 blends and its partial-miscible blends during melt mixing from sem patterns. Polymer, 47(8), 2894–2903. DOI: 10.1016/j.polymer.2006.02.048.

  • 27. Zhang, H., Chen, Z., Xu, G. & Shi, C. (2018). Physical, rheological and chemical characterization of aging behaviors of thermochromic asphalt binder. Fuel, 211, 850–858. DOI: 10.1016/j.fuel.2017.09.111.

  • 28. Welch, C.F., Rose, G.D., Malotky, D. & Eckersley, S.T. (2006). Rheology of high internal phase emulsions. Langmuir, 22(4), 1544–1550. DOI: 10.1021/la052207h.

  • 29. Wei, X., Collier, J.R. & Petrovan, S. (2007). Shear and elongational rheology of polyethylenes with different molecular characteristics. ii. elongational rheology. J. Appl. Polym. Sci. 104(2), 1184–1194. DOI: 10.1002/app.25757.

  • 30. Dupin, J.C., Gonbeau, D., Vinatier, P. & Levasseur, A. (2000). Systematic xps studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys., 2. DOI: 10.1039/A908800H.

  • 31. Zhu, K., Jia, H., Zhao, S., Xia, T. & Zhu, L. (2019). Formation of environmentally persistent free radicals on microplastics under light irradiation. Environ. Sci. Technol. DOI: 10.1021/acs.est.9b01474.

  • 32. Mirjalili, A., Zamanian, A. & Hadavi, M.M. (2019). TiO2 nanotubes-polydopamine-silver composites for long-term antibacterial properties: preparation and characterization. Biomed. Engin. Appl. Basis Commun. 31(03), 243–196. DOI: 10.4015/S1016237219500236.

  • 33. Valverde, J.M., Perejón, A., Medina-Carrasco, S. & Pérez Maqueda, L.A. (2015). Thermal decomposition of dolomite under co2: insights from TGA and in situ XRD analysis. Phys. Chem. Chem. Phys. 17, 30162–30176. DOI: 10.1039/c5cp05596b_.

  • 34. Moore, Radhika, L., Mann, Jason & P., et al. (2018). In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions. Phys. Chem. Chem. Phys.: PCCP. DOI: 10.1039/c7cp07754h.

  • 35. Sergei, D., Aleksei, K., Mykhailo & Zhovner, et al. (2019). Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis. J. Biolog. Phys. DOI: 10.1007/s10867-018-9516-5.


Journal + Issues