Impact of natural antioxidant systems on the oxidation resistance and mechanical properties of polypropylene

Dilhumar Musajan 1 , Maklinur Mamatjan 2 , Riza Beken 1  and Mamatjan Yimit 1
  • 1 Key Laboratory of Oil and Gas Fine Chemicals, Urumqi, China
  • 2 School of Materials Science and Engineering, Guangzhou


This paper describes the separation of oxidation resistant components from the seeds of pomegranate (PSA), grape (GSE) and sea buckthorn (SSE). The anti-oxidation properties of the resultant extracts, used as the natural anti-oxidants for polypropylene (PP), were compared with Irganox1010. The effects of these natural antioxidants on the antioxidant levels of PP samples were estimated by thermal oxidative aging and micromixed rheology, OIT, XRD, SEM, TEM and mechanical properties tests of samples before and after aging. The results show that adding PSA, GSE and SSE can obviously increase the mechanical properties of PP. In addition, the molding stability of polypropylene raw material is prolonged and improved. Moreover, the mechanical properties of the PP samples after 240 h of thermal oxidative aging indicates that, the best results, closest to the anti-oxidation ability of Irganox1010, can be obtained when the additive amount is 0.5% (wt%) for PSE or 0.7% (wt%) for GSE.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Natta, G., Pasquon, I. & Zambelli, A.J. (1962). Stereospecific Catalysts for the Head-To-Tail Polymerization of Propylene to a Crystalline Syndiotactic Polymer. J. Amer. Chem. Soc. 84(8), 1488–1490. DOI: 10.1021/ja00867a029.

  • 2. Tochaceck, J., Jancar, J. & Kalfus, J. (2008). Degradation of polypropylene impact-copolymer during processing. Pol. Degrad. & Stab. 93(4), 770–775.DOI: 10.1016/j.polymdegrad-stab.2008.01.027.

  • 3. Wang, X., Wang, B., Song, L., Wen, P., Tang, G. & Hu, Y. (2013). Antioxidant behavior of a novel sulfur-bearing hindered phenolic antioxidant with a high molecular weight in polypropylene. Pol. Degrad. & Stab 98(9), 1945–1951. DOI: 10.1016/j.polymdegradstab.2013.05.019.

  • 4. Adams, J.H. & Goodrich, J.E. (1970). Analysis of nonvolatile oxidation products of polypropylene. II. Process degradation. J. Pol. Sci. Part A-1: Pol. Chem. 8(5), 1269–1277. DOI: 10.1002/pol.1970.150080519.

  • 5. Enikö Földes & Lohmeijer, J. (1999). Relationship between chemical structure and performance of primary antioxidants in PBD. Pol. Degrad. & Stab. 66(1), 31–39. DOI: 10.1016/S0141-3910(99)00049-X.

  • 6. Ritter, A. Michel, E. Schmid, M. & Affolter, S. (2005). Interlaboratory test on polymers: determination of antioxidants in polyolefins. Polymer Testing. 24(4), 498–506. DOI: 10.1016/j. polymertesting.2004.11.012.

  • 7. Tertyshnaya, Y.V., Shibryaeva, L.S. & Popov, A.A. (2012). Thermooxidative degradation of blends based on poly(3-hydroxybutyrate). Russian J. Phys. Chem. B. 6(1), 38–41. DOI: 10.1134/S1990793112010149.

  • 8. Oikawa, S. Nishino, K. Inoue, S. Mizutani, T. & Kawanishi, S. (1998). Oxidative DNA damage and apoptosis induced by metabolites of butylated hydroxytoluene. Biochem. Pharmacol. 56(3), 361–370. DOI: 10.1016/S0006-2952(98)00037-9.

  • 9. Arvanitoyannis, I.S. & Kotsanopoulos, K.V. (2014). Migration phenomenon in food packaging. Food–package interactions, mechanisms, types of migrants, testing and relative legislation—a review. Food Bioproc. Technol. 7(1), 21–36. DOI: 10.1007/s11947-013-1106-8.

  • 10. Bae, Y.M., Baek, S.Y. & Lee, S.Y. (2012). Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Internat. J. Food Microbiol. 153(3), 465–473. DOI: 10.1016/j. ijfoodmicro.2011.12.017.

  • 11. Brocca, D.. Arvin, E. & K, H. (2002). Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Research. 36(15), 0-3680. DOI: 10.1016/s0043-1354(02)00084-2.

  • 12. Kirschweng, Balázs., Tátraaljai, Dóra, F.E. & Pukánszky, Béla. (2015). Efficiency of curcumin, a natural antioxidant, in the processing stabilization of PE: concentration effects. Pol. Degrad. Stab. 118, 17–23. DOI: 10.1016/j.polymdegradstab.2015.04.006.

  • 13. Aymes-Chodur, C., Betz, N., Legendre, B. & Yagoubi, N. (2006). Structural and physico-chemical studies on modification of polypropylene and its polyphenolic antioxidant by electron beam irradiation. Pol. Degrad. Stab. 91(4), 649–662. DOI: 10.1016/j.polymdegradstab.2005.05.013.

  • 14. Riley, P.A. (2009). Free radicals in biology: oxidative stress and the effects of ionizing radiation. J. Radit. Biol. Related Stud. Phys. Chem. Med. 65(1), 27–33. DOI: 10.1080/09553009414550041.

  • 15. Brewer, M.S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Rev. Food Sci. Food Safety. 10(4), 221–247. DOI: 10.1111/j.1541-4337.2011.00156.x.

  • 16. Jomova, K. & Valko, M. (2014). Cheminform abstract: health protective effects of carotenoids and their interactions with other biological antioxidants. ChemInform, 70(9), 102–110. DOI: 10.1002/chin.201409280.

  • 17. Greenlee, H. (2016). Natural products for cancer prevention. Semin. Onkol. Nursing. 32(3), 215. DOI: 10.1016/j. soncn.2016.06.001.

  • 18. Cazzonelli, C.I. (2011). Carotenoids in nature: insights from plants and beyond. Functional Plant Biology. 38. DOI: 10.1071/FP11192.

  • 19. Cerruti, P., Malinconico, M., Rychly, J., Matisova-Rychla, L. & Carfagna, C. (2009). Effect of natural antioxidants on the stability of polypropylene films. Pol. Degrad. Stab. 94(11), 2095–2100. DOI: 10.1016/j.polymdegradstab.2009.07.023.

  • 20. Liebler, D.C. & Mcclure, T.D. (1996). Antioxidant reactions of β-carotene: identification of carotenoid−radical adducts. Chem. Res. Texicol. 9(1), 8–11. DOI: 10.1021/tx950151t.

  • 21. Monego, D.L., Da Rosa, M.B. & do Nascimento, Paulo Cícero. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: a review. Food Food Chem. 217, 37–44. DOI: 10.1016/j.foodchem.2016.08.073.

  • 22. Amparo López-Rubio & Lagaron, J.M. (2010). Improvement of UV stability and mechanical properties of biopolyesters through the addition of β-carotene. Pol. Degrad. Stab. 95(11), 2162–2168. DOI: 10.1016/j.polymdegradstab.2010.03.002.

  • 23. Abdel-Razik, E.A. (1992). Photoinduced graft copolymerization of acrylamide onto styrene—butadiene—acrylonitrile copolymer. J. Photochem. Photobiol. A Chem. 69(1), 121–124. DOI: 10.1016/1010-6030(92)85268-Y.

  • 24. Mónica Galleano, Verstraeten, S.V., Oteiza, P.I. & Fraga, C.G. (2010). Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Archi. Biochem. Biophys. 501(1), 0–30. DOI: 10.1016/

  • 25. Ambrogi, V., Cerruti, P., Carfagna, C., Malinconico, M., Marturano, V. & Perrotti, M. (2011). Natural antioxidants for polypropylene stabilization. Pol. Degrad. Stab. 96(12), 2152–2158. DOI: 10.1016/j.polymdegradstab.2011.09.015.

  • 26. Nanni, A. & Messori, M. (2018). A comparative study of different winemaking by-products derived additives on oxidation stability, mechanical and thermal proprieties of polypropylene. Pol. Degrad. Stab. 149, 9–18. DOI: 10.1016/j. polymdegradstab.2018.01.012.

  • 27. Samper, M.D., Fages, E., Fenollar, O., Boronat, T. & Balart, R. (2013). The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J. Appl. Pol. Sci. 129(4), 1707–1716. DOI: 10.1002/app.38871.

  • 28. Kasprzak, M.M., Erxleben, A. & Ochocki, J. (2015). Cheminform abstract: properties and applications of flavonoid metal complexes. ChemInform. 46(29), 45853–45877. DOI: 10.1002/chin.201529267.

  • 29. Elhamirad, A.H. & Zamanipoor, M.H. (2012). Thermal stability of some flavonoids and phenolic acids in sheep tallow olein. Europ. J. Lipid Sci. Technol. 114(5), 602–606. DOI: 10.1002/ejlt.201100240.

  • 30. Doudin, K. Al-Malaika, S. Sheena, H.H., Tverezovskiy, V. & Fowler, P. (2016). New genre of antioxidants from renewable natural resources: synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins. Pol. Degrad. Stab. 130, 126–134. DOI: 10.1016/j. polymdegradstab.2016.05.030.

  • 31. Gosselink, R.J.A., Abacherli, A., Semke, H., Malherbe, R. & Nadif, A. (2004). Analytical protocols for characterisation of sulphur-free lignin. Ind. Crops. Prod. 19(3), 271–281. DOI: 10.1016/j.indcrop.2003.10.008.

  • 32. Gregorová, A., Cibulková, Z. & Košíková, B. (2005). Stabilization effect of lignin in polypropylene and recycled polypropylene. Pol. Degrad. Stab. 89(3), 553–558. DOI: 10.1016/j. polymdegradstab.2005.02.007.

  • 33. Peng, Y., Liu, R. & Cao, J. (2015). Characterization of surface chemistry and crystallization behavior of polypropylene composites reinforced with wood flour, cellulose, and lignin during accelerated weathering. Appl. Surf. Sci. 332, 253–259. DOI: 10.1016/j.apsusc.2015.01.147.

  • 34. Park, J., Kim, K., Lee, E.J., Seo, Y.J., Lim, S.N. & Park, K. (2007). Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc. Nat. Acad. Sci. 104(43), 17028–17033. DOI: 10.1073/pnas.0609852104.

  • 35. Schabron, J.F. (1982). Determination of polyolefin additives by normal-phase high performance liquid chromatography following soxhlet extraction. J. Liquid Chrom. 5(7), 1269–1276. DOI: 10.1080/01483918208067586.

  • 36. Arai, Y., Noto, Y., Goto, Y., Takahashi, S., Yamamoto, M. & Nishiyama, T. (2015). Study of the decomposition mechanism of pmma-type polymers by hydrogen radicals. Thin Solid Films. 575, 12–16. DOI: 10.1016/j.tsf.2014.10.021.

  • 37. Kim, H.S., Quon, M.J. & Kim, J.A. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2, 187–195. DOI: 10.1016/j. redox.2013.12.022.


Journal + Issues