Multiphase extraction of ephedrine from Pinellia ternata using bionic liquid-modified polymer

Open access


Multiphase extraction (MPE) was applied as a developed, convenient and efficient method in separation of ephedrine from Pinellia ternata. Firstly, in order to increase the adsorption efficiency, bionic liquid-modified polymer was created. Comparing the effects of all sorbents under variables conditions, the highest amount of 5.8 mg/g can be adsorbed on dual imidazole ionic liquid modified polymer (Im-Im-Poly) in methanol/water (70:30, v/v) solution at 25°C within 30.0 min. Then the Im-Im-Poly was applied in MPE, after 7 times repetition of extraction, around 1.0 mg/g of ephedrine from Pinellia ternata was detected. After washing by water, ethanol and methanol, and elution by methanol/acetic acid (99.0:1.0, v/v), ephedrine was successfully separated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Buyel J.F. (2018). Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv. 36 506–520. DOI: org/10.1016/j.biotechadv.2018.02.002.

  • 2. Ložienė K. Švedienė J. Paškevičius A. Raudonienė V. Sytar O. & Kosyan A. (2018). Influence of plant origin natural α-pinene with different enantiomeric composition on bacteria yeasts and fungi. Fitoterapia 127 20–24. DOI: org/10.1016/j.fitote.2018.04.013

  • 3. Unuofin J.O. Otunola G.A. & Afolayan A.J. (2018). Evaluation of acute and subacute toxicity of whole-plant aqueous extract of Vernonia mespilifolia Less. in Wistar rats. J. Integr. Med. 16 335–341 DOI: org/10.1016/j.joim.2018.07.003.

  • 4. Dubey N.K. Dwivedy A.K. Chaudhari A.K. & Das S. (2018). Chapter 13-common toxic plants and their forensic significance in: Natural Products and Drug Discovery Elsevier Ltd. Amsterdam pp. 349–374. DOI: org/10.1016/B978-0-08-102081-4.00013-7.

  • 5. Ng A.W.T. Poon S.L. Huang M.N. Lim J.Q. Boot A. Yu W. Suzuki Y. Thangaraju S. Ng C.C.Y. Tan P. Pang S. Huang H. Yu M. Lee P. Hsieh S. Chang A.Y. Teh B.T. & Rozen S.G. (2017). Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci. Transl. Med. 9 eaan6446. DOI: 10.1126/scitranslmed.aan6446.

  • 6. Alsufyani H.A. & Docherty J.R. (2018). Direct and indirect effects of ephedrine on heart rate and blood pressure in vehicle-treated and sympathectomised male rats. Eur. J. Pharmacol. 825 34–38. DOI: org/10.1016/j.ejphar.2018.02.021.

  • 7. Zhang X.C. Pharm N.F. Haronian T. & Hack J. (2017). Postoperative anticholinergic poisoning: concealed complications of a commonly used medication. J. Emerg. Med. 53 520–523. DOI: org/10.1016/j.jemermed.2017.05.003.

  • 8. Georgescu B.E. Branger C. Iordache T Iovu H. Vitrik O.B. Dyshlyuk A.V. Sarbu A. & Brisset H. (2018). Application of unusual on/off electrochemical properties of a molecularly imprinted polymer based on an EDOT-thiophene precursor for the detection of ephedrine. Electrochem. Commun. 94 45–48. DOI: org/10.1016/j.elecom.2018.08.004.

  • 9. Taghvimi A. & Hamishehkar H. (2017). Carbon coated magnetic nanoparticles as a novel magnetic solid phase extraction adsorbent for simultaneous extraction of methamphetamine and ephedrine from urine samples. J. Chromatogr. B 1041-1042 113–119. DOI: org/10.1016/j.jchromb.2016.11.039.

  • 10. Zhong S. Kong Y. Zhou L. Zhou C. Zhang X & Wang Y. (2014). Efficient conversion of myricetin from Ampelopsis grossedentata extracts and its purification by MIPSPE. J. Chromatogr. B 945–946 39–45. DOI: org/10.1016/j.jchromb.2013.11.036.

  • 11. Deng D.L. Zhang J.Y. Chen C. Hou X.L. Su Y.Y. & Wu L. (2012). Monolithic molecular imprinted polymer fiber for recognition and solid phase microextraction of ephedrine and pseudoephedrine in biological samples prior to capillary electrophoresis analysis. J. Chromatogr. A 1219 195–200. DOI: org/10.1016/j.chroma.2011.11.016.

  • 12. Wang L. Yan H. Yang C. Li Z. & Qiao F. (2016). Synthesis of mimic molecularly imprinted ordered mesoporous silica adsorbent by thermally reversible semicovalent approach for pipette-tip solid-phase extraction-liquid chromatography fluorescence determination of estradiol in milk. J. Chromatogr. A 1456 58–67. DOI: org/10.1016/j.chroma.2016.06.010.

  • 13. Han Y. Yang C. Zhou Y. Han D. & Yan H. (2017). Ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled with HPLC for determination of 6-benzyladenine and 4-chlorophenoxyacetic acid in bean sprouts. J. Agr. Food Chem. 65 1750–1757. DOI: 10.1021/acs.jafc.6b03922.

  • 14. Zhang H. Yuan Y. Sun Y. Niu C. Qiao F. & Yan H. (2018). An ionic liquid-magnetic graphene composite for magnet dispersive solid-phase extraction of triazine herbicides in surface water followed by high performance liquid chromatography. Analyst 143 175–181. DOI: 10.1039/c7an01290j.

  • 15. Huang D. Zheng H. Liu Z. Bao A. & Li B. (2018). Extraction of rubidium and cesium from brine solutions using a room temperature ionic liquid system containing 18-crown-6. Pol. J. Chem. Technol. 20 40–46. DOI: org/10.2478/pjct-2018-0021.

  • 16. Chen H. Yuan Y. Xiang C. Yan H. Han Y. & Qiao F. (2016). Graphene/multi-walled carbon nanotubes functionalized with an amine-terminated ionic liquid for determination of (Z)-3-(chloromethylene)-6-fluorothiochroman-4-one in urine. J. Chromatogr. A 1474 23–31.

  • 17. Wang X. Lin L. Xie J. Yan X. Xiao W. & Tian M. (2018). Adsorption efficiency of pentafluorobenzene on ionic liquids-based silicas. Pol. J. Chem. Technol. 20 47–52. DOI: 10.2478/pjct-2018-0037.

  • 18. Fang L. Tian M. Yan X. & Xiao W. (2018). Isolation of aflatoxin B1 from moldy foods by solid-phase extraction combined with bifunctional ionic liquid-based silicas. J. Anal. Methods Chem. 2018 8427580. DOI: org/10.1155/2018/8427580.

  • 19. Yang S. Zhang Q. Hu Y. Ding G. & Wang J. (2019). Synthesis of maleimide modified imidazole derivatives and their application in one-component epoxy resin systems. Mater. Lett. 234 379–383. DOI: org/10.1016/j.matlet.2018.09.147.

  • 20. Gevaerd A. Blaskievicz S.F. Zarbin A.J.G. Orth E.S. Bergamini M.F. & Marcolino-Junior L.H. (2018). Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosensors Bioelectron. 112 108–113. DOI: 10.1016/j.bios.2018.04.044.

  • 21. Zhang Y. Zhang T. Guo C. Hou S. Hua Z. Lv J. Zhang Y. & Xu J. (2018). Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. Sci. Total Environ. 618 284–290. DOI: org/10.1016/j.scitotenv.2017.11.068.

  • 22. Tian S. Guo Z. Zhang X. & Wu X. (2013). Synthesis of molecularly imprinted co-polymers for recognition of ephedrine. Anal. Methods 5 5179–5187. DOI: 10.1039/C3AY41202D.

  • 23. Dong X. Wang W. Ma S. Sun H. Li Y. & Guo J. (2005). Molecularly imprinted solid-phase extraction of (-)-ephedrine from Chinese Ephedra. J. Chromatogr. A 1070 125–130. DOI: org/10.1016/j.chroma.2005.03.017.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 25 25 25
PDF Downloads 30 30 30