Enzymatic bioconversion of feather waste with keratinases of Bacillus cereus PCM 2849

Open access


Enzymatic preparation from culture of keratinolytic Bacillus cereus PCM 2849 was applied for hydrolysis of whole chicken feathers, after sulphitolytic pretreatment. This process was optimized using a three-factor Box-Behnken design, where the effect of substrate concentration, sulphite concentration during pretreatment and reaction temperature was evaluated on the release of amino acids. Obtained results revealed the highest impact of reaction temperature, followed by substrate content and sulphite during pretreatment. Optimal process conditions were established, i.e. temperature 44.4°C, feathers 4.7% and treatment with 25.3 mM sulphite. Amino acid composition of the obtained hydrolysate was analyzed. Glutamic acid (9.21 g·kg−1) and proline were dominant, however significant amount of branched-chain amino acids was also observed. The FTIR analysis of residual substrate revealed the cleavage of disulphide bonds in keratin through the presence of thioester residues. The absence of reduced cysteine residues was confirmed, along with minor changes in proportions of keratin substructures.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Lasekan A. Bakar F.A. & Hashim D.(2013). Potential of chicken by-products as sources of useful biological resources. Waste Manage.33(3) 552–565. https://doi.org/10.1016/j.wasman.2012.08.001

  • 2. FAO. 2019. Meat Market Review March 2019. Rome. Retrieved April 07 2019 from http://www.fao.org/poultry-production-products/en/

  • 3. Paul T. Halder S.K. Das A. Bera S. Maity C. Mandal A. Das P.S. Das Mohapatra P.K. Pati B.R. & Mondal K.C. (2013). Exploitation of chicken feather waste as a plant growth promoting agent using keratinase producing novel isolate Paenibacillus woosongensis TKB2. Biocatal. Agric. Biotechnol. 2(4) 50–57. https://doi.org/10.1016/j.bcab.2012.10.001.

  • 4. Huda S. & Yang Y. (2009). Feather fiber reinforced light-weight composites with good acoustic properties. J. Polym. Environ. 17(2) 131–142. https://doi.org/10.1007/s10924-009-0130-2.

  • 5. Skopińska-Wiśniewska J. (2013). Keratin in medicine and tissue engineering [in polish]. Polimery W. 58 2. DOI: dx.doi. org/10.14314/polimery.2013.100.

  • 6. Khosa M.A. Wu J. & Ullah A. (2013). Chemical modification characterization and application of chicken feathers as novel biosorbents. RSC Adv. 3(43) 20800–20810. https://doi.org/10.1039/C3RA43787F.

  • 7. Gupta R. & Ramnani P. (2006). Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotech. 70(1) 21–33. https://doi.org/10.1007/s00253-005-0239-8.

  • 8. Brandelli A. (2008). Bacterial Keratinases: Useful enzymes for bioprocessing agroindustrial wastes and beyond. Food and Bioprocess Tech. 1(2) 105–116. https://doi.org/10.1007/s11947-007-0025-y.

  • 9. Gessesse A. Hatti-Kaul R. Gashe B.A. & Mattiasson B.(2003). Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme and Microbial Technology. 32(5) 519–524. https://doi.org/10.1016/S0141-0229(02)00324-1.

  • 10. Suntornsuk W. & Suntornsuk L. (2003). Feather degradation by Bacillus sp. FK 46 in submerged cultivation. Biores. Technol. 86(3) 239–243. https://doi.org/10.1016/S0960-8524(02)00177-3.

  • 11. Yamamura S. Morita Y. Hasan Q. Yokoyama K. & Tamiya E. (2002). Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem. Biophys. Res. Communic. 294 1138–1143.

  • 12. Kumar A.G. Swarnalatha S. Gayathri S. Nagesh N. & Sekaran G. (2007). Characterization of an alkaline active – thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus. J. Appl. Microbiol. 104 411–419. DOI: 10.1111/j.1365-2672.2007.03564.x.

  • 13. Cortezi M. Cilli E.M. & Contiero J. (2008). Bacillus amyloliquefaciens: A new Keratinolytic Feather-degrading Bacteria. Current Trends in Biotechnol. Pharmacy. 2(1) 170–177.

  • 14. Fakhfakh N. Ktari N. Haddar A. Mnif I.H. Dahmen I. & Nasri M. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium Bacillus pumilus A1 and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry. 46(9) 1731–1737.

  • 15. Daroit D.J. Corrêa A.P.F. & Brandelli A. (2011). Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Internat. Biodeterior. & Biodegrad. 65 (1) 45–51. doi:10.1016/j.ibiod.2010.04.014.

  • 16. Choi M.J. & Nelson P.V. (1996). Developing a slow-release nitrogen fertilizer from organic sources: II. Using poultry feathers. J. ASHS. 121(4) 634–638.

  • 17. Gupta R. & Ramnani P. (2006). Microbial keratinases and their prospective applications: an overview. Appl Microbiol and Biotech. 70(1) 21–33. https://doi.org/10.1007/s00253-005-0239-8.

  • 18. Sun S.W. Lin Y.C. Weng Y.M. & Chen M.J.(2006). Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 19(2–3) 112–117. https://doi.org/10.1016/j.jfca.2005.04.006.

  • 19. Łaba W. & Szczekała K.B. (2013). Keratinolytic proteases in biodegradation of pretreated feathers. Pol. J. Environ. Stud. 22(4) 1101–1109.

  • 20. Liu H.L. Lan Y.W. & Cheng Y.C. (2004). Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochem.39(12) 1953–1961. https://doi.org/10.1016/j.procbio.2003.09.018.

  • 21. Eslahi N. Hemmatinejad N. & Dadashian F. (2013). From feather waste to valuable nanoparticles. Particul. Sci. Technol. 32(3) 242–250. https://doi.org/10.1080/02726351.2013.851135.

  • 22. Kumar M.D.J. Priya P. Balasundari N.S. Devi N.G.S.D. Kalaichelvan I.N.R.A. & Kalaichelvan P.T. (2012). Production and optimization of feather protein hydrolysate from Bacillus sp. MPTK6 and its antioxidant potential. Middle-East J. Sci. Res. 11(7) 900.907.

  • 23. Łaba W. Żarowska B. Chorążyk D. Pudło A. Piegza M. Kancelista A. & Kopeć W. (2018). New keratinolytic bacteria in valorization of chicken feather waste. AMB Express. 8(1) 9. https://doi.org/10.1186/s13568-018-0538-y.

  • 24. Eslahi N. Dadashian F. & Nejad N.H. (2013). An investigation on keratin extraction from wool and feather waste by enzymatic hydrolysis. Prep. Biochem. Biotech. 43(7) 624–648. https://doi.org/10.1080/10826068.2013.763826.

  • 25. Paul T. Das A. Mandal A. Halder S.K. Dasmohapatra P.K. Pati B.R. & Mondal K.C. (2014). Valorization of chicken feather waste for concomitant production of keratinase oligopeptides and essential amino acids under submerged fermentation by Paenibacillus woosongensis TKB2. Waste Biomass Valor. 5(1) 575–584. https://doi.org/10.1007/s12649-013-9267-2.

  • 26. Sangali S. & Brandelli A. (2000). Feather keratin hydrolysis by a Vibrio sp. strain kr2. J. Appl. Microbiol. 89(5) 735–743. https://doi.org/10.1046/j.1365-2672.2000.01173.x.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 92 16
PDF Downloads 82 82 18