Lignocellulosic fraction of the pericarps of the acorns of Quercus suber and Quercus ilex: isolation, characterization, and biosorption studies in the removal of copper from aqueous solutions

Open access


Pericarps of Algerian Quercus ilex (Q. ilex) and Quercus suber (Q. suber) were used as copper adsorbents in artificially contaminated solutions. Exposing accessible lignocellulosic binding sites enhanced adsorption. The lignocellulosic fractions of Q. suber and Q. ilex (36.47±9.1 and 47.66±9.3, respectively) were characterized by FTIR before and after adsorption. The aim was to identify the functional groups adsorbing Cu(II). SEM/EDX determined lignocellulose surface morphology and composition. The amount of adsorbent-bound Cu(II) increased with initial [Cu(II)]. Cu(II) adsorption range was 23.59–48.06 mg.g−1 for Q. Suber and 22.56–38.19 mg.g−1 for Q. ilex when [Cu(II)] was 100–500 mg.L−1. Adsorption isotherms and Langmuir and Freundlich models of the Q. suber and Q. ilex lignocellulosic fractions indicated natural Cu(II)adsorption capacities (Qmax) of 53.76 mg.g−1 and 36.06 mg.g−1 and KF of 5.9 mg.g−1 and 7.43 mg.g−1, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Afroze S. & Sen T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229 225. DOI: 10.1007/s11270-018-3869-z.

  • 2. Amuda O.S. Amoo I.A. Ipinmoroti K.O. & Ajayi O.O.(2006). Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ. Manage.10(3) 159–162. DOI: 10.4314/jasem.v10i3.17339.

  • 3. Wang J.L. & Xu L.J. (2012). Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42 251–325. DOI: 10.1080/10643389.2010.507698.

  • 4. Rivas B.L. & Palencia M. (2011). Removal-concentration of pollutant metal-ions by water-soluble polymers in conjunction with double emulsion systems: A new hybrid method of membrane-based separation. Sep. Purif. Technol. 81(3) 435–443. DOI: 10.1016/j.seppur.2011.08.021.

  • 5. Saleh T.A. & Gupta V.K. (2014). Processing methods characteristics and adsorption behavior of tire derived carbons: A review. Adv. Colloid. Interface Sci. 211 93–101. DOI: 10.1016/j.cis.2014.06.006.

  • 6. Rubio J. Souza M.L. & Smith R.W. (2002). Overview of flotation as a wastewater treatment technique. Miner. Eng. 15(3) 139–155. DOI: 10.1016/S0892-6875(01)00216-3.

  • 7. Agwaramgbo L. Magee N. Nunez S. & Mitt K. (2013). Biosorption and chemical precipitation of lead using biomaterials molecular sieves and chlorides carbonates and sulfates of Na & Ca. J. Environ. Prot. 4(11) 1251–1257. DOI: 10.4236/jep.2013.411145.

  • 8. Gähr F. Hermanutz F. & Oppermann W. (1994). Ozonation-an important technique to comply with new German laws for textile wastewater treatment. Water Sci. Technol. 30(3) 255–263. DOI: 10.2166/wst.1994.0115.

  • 9. Abdel-Aziz M.H. Nirdosh I. & Sedahmed G.H. (2013). Ion-exchange-assisted electrochemical removal of heavy metals from dilute solutions in a stirred-tank electrochemical reactor: a mass-transfer study. Ind. Eng. Chem. Res. 52(33) 11655–11662. DOI: 10.1021/ie400548w.

  • 10. Dean J.G. Bosqui F.L. & Lanouette K.H. (1972). Removing heavy metals from waste water. Environ. Sci. Technol. 6(6) 518–522. DOI: 10.1021/es60065a006.

  • 11. Lin S.H. & Juang R.S. (2002). Removal of free and chelated Cu (II) ions from water by a nondispersive solvent extraction process. Water Res. 36 3611–3619. DOI: 10.1016/S0043-1354(02)00074-X.

  • 12. Tao H.C. Lei T. Shi G. Sun X.N. Wei X.Y. Zhang L.J. & Wu W.M.(2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. J. Hazard. Mater. 264 1–7. DOI: 10.1016/j.jhazmat.2013.10.057.

  • 13. Sreeprasad T.S. Maliyekkal S. M. Lisha K.P. & Pradeep T. (2011). Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J. Hazard. Mater. 186(1) 921–931. DOI: 10.1016/j.jhazmat.2010.11.100.

  • 14. Nielsen P.B. Christensen T.C. & Vendrup M. (1997). Continuous removal of heavy metals from FGD wastewater in a fluidised bed without sludge generation. Water Sci. Technol. 36(2–3) 391–397. DOI: 10.1016/S0273-1223(97)00413-7.

  • 15. Ahluwalia S.S. & Dinesh G. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores.Technol. 98(12) 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.

  • 16. Bailey S.E. Olin T.J. Bricka R.M. & Adrian D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Res. 33 (11)2469–2479. DOI: 10.1016/S0043-1354(98)00475-8.

  • 17. Mohan D. Sarswat A. Ok Y.S. & Pittman C.U. (2014). Organic and inorganic contaminants removal from water with biochar a renewable low cost and sustainable adsorbent – a critical review. Biores. Technol. 160 191–202. DOI: 10.1016/j.biortech.2014.01.120.

  • 18. Vikrant K. Giri B.S. Raza N. Roy K. Kim K.H. Rai B.N. & Singh R.S. (2018). Recent advancements in bioremediation of dye: current status and challenges. Biores. Technol. 253 355–367. DOI: 10.1016/j.biortech.2018.01.029.

  • 19. Robati D. Mirza B. Rajabi M. Moradi O. Tyagi I. Agarwal S. & Gupta V.K. (2016). Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284 687–697. DOI: 10.1016/j.cej.2015.08.131.

  • 20. Gupta V.K. Nayak A. Agarwal S. & Tyagi I. (2014). Potential of activated carbon from waste rubber tire for the adsorption of phenolics: effect of pre-treatment conditions. J. Colloid. Interface Sci. 417 420–430. DOI: 10.1016/j.jcis.2013.11.067.

  • 21. Barka N. Abdennouri M. El-Makhfouk M. & Qoursal S. (2013). Biosorption characteristics of cadmium and lead onto eco-friendly dried cactus (Opuntia ficus indica) cladodes. J. Environ. Chem. Eng. 1(3) 144–149. DOI: 10.1016/j.jece.2013.04.008.

  • 22. Gupta V.K. & Rastogi A. (2008). Biosorption of lead from aqueous solutions by green algae Spirogyraspecies: kinetics and equilibrium studies. J. Hazard. Mater. 2008;152(1) 407–414. DOI: 10.1016/j.jhazmat.2007.07.028.

  • 23. Afroze S. & Sen T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut. 229(7) 225. DOI: 10.1007/s11270-018-3869-z.

  • 24. Gupta V.K. & Saleh T.A. (2013). Sorption of pollutants by porous carbon carbon nanotubes and fullerene-an overview. Environ. Sci. Pollut. Res. 20(5) 2828–2843. DOI: 10.1007/s11356-013-1524-1.

  • 25. Ahmaruzzaman M. & Gupta V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 50(24) 13589–13613. DOI: 10.1021/ie201477c.

  • 26. Hao X. Mohamad O.A. Xie P. Rensing C. & Wei G. (2014). Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae. Separ. Sci. Technol. 49(3) 376–387. DOI: 10.1080/01496395.2013.843195.

  • 27. Jakóbik-Kolon A. Mitko K. & Bok-Badura J. (2017). Zinc sorption studies on pectin-based biosorbents. Materials 10(7) 844. DOI: 10.3390/ma10070844.

  • 28. Haroon H. Gardazi S.M.H. Butt T.A. Pervez A. Mahmood Q. & Bilal M. (2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2)6–15. DOI: 10.1515/pjct-2017-0021.

  • 29. Marchetti V. Clément A. Gérardin P. & Loubinoux B. (2000). Synthesis and use of esterified sawdusts bearing carboxyl group for removal of cadmium(II) from water. Wood Sci.Technol. 34(2) 167–173. DOI: 10.1007/s002260000040.

  • 30. Hachem K. Astier C. Chaleix V. Faugeron C. Krausz P. Kaid-Harche M. & Gloaguen V. (2012). Optimization of lead and cadmium binding by oxidation of biosorbent polysaccharidic moieties. Water Air Soil Pollut. 223(7) 3877–3885. DOI: 10.1007/s11270-012-1156-y.

  • 31. Genevois N. Villandier N. Chaleix V. Poli E. Jauberty L. & Gloaguen V. (2017). Removal of cesium ion from contaminated water: improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation. Ecol. Eng. 100 186–193. DOI: 10.1016/j.ecoleng.2016.12.012.

  • 32. Astier C. Chaleix V. Faugeron C. Ropartz D. Gloaguen V. & Krausz P. (2010). Grafting of aminated oligogalacturonans onto Douglas fir barks. a new route for the enhancement of their lead(II) binding capacities. J. Hazard. Mater. 182(1) 279–285. DOI: 10.1016/j.jhazmat.2010.06.027.

  • 33. Yeo T.H.C. Tan I.A.W. & Abdullah M.O. (2012). Development of adsorption air-conditioning technology using modified activated carbon – A review. Renew. Sustain. Energy. Rev. 16(5) 3355–3363. DOI: 10.1016/j.rser.2012.02.073.

  • 34. Nebagha K.C. Ziat K. Rghioui L. Khayet M. Saidi M. Aboumaria K. El Hourch A. & Sebti S. (2015). Adsorptive removal of copper (II) from aqueous solutions using low-cost Moroccan adsorbent. Part I: parameters influencing Cu (II) adsorption. J. Mater. Environ. Sci. 6(11) 3022–3033.

  • 35. Li Y. Xia B. Zhao Q. Liu F. Zhang P. Du Q. Wang D. Li D. Wang Z. & Xia Y.(2011). Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin. J. Environ. Sci. 23(3) 404–411. DOI: 10.1016/S1001-0742(10)60442-1.

  • 36. Bailey R.W. (1967). Quantitative studies of ruminant digestion. NZ J. Agric. Res. 10(1):15–32. DOI: 10.1080/00288233.1967.10423074.

  • 37. Carpita N.C. (1984). Fractionation of hemicelluloses from maize cell walls with increasing concentrations of alkali. Phytochemistry 23(5) 1089–1093. DOI: 10.1016/s0031-9422(00)82615-1

  • 38. Mehlig J. (1941). Colorimetric determination of copper with ammonia. Ind. Eng. Chem. Anal. Ed. 13(8) 533–535. DOI: 10.1021/i560096a006.

  • 39. Hameed B.H. Mahmoud D.K. & Ahmad A.L. (2008). Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J. Hazard Mater. 158(1) 65–72. DOI: 10.1016/j.jhazmat.2008.01.034.

  • 40. Dawczynski C. Schubert R. & Jahreis G. (2007). Amino acids fatty acids and dietary fibre in edible seaweed products. Food Chem. 103(3) 891–899. DOI: 10.1016/

  • 41. El Gamal A.A. (2010). Biological importance of marine algae. Saudi Pharmaceut. J. 18(1) 1–25. DOI: 10.1016/j.jsps.2009.12.001.

  • 42. Proctor M.C.F. (2000). The bryophyte paradox: tolerance of desiccation evasion of drought. Plant Ecol. 151(1) 41–49. DOI: 10.1023/A:1026517920852.

  • 43. Yargıç A. Ş. Yarbay Şahin R. Z. Özbay N. & Önal E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste(Solanum lycopersicum). J. Clean. Prod. 88 152–159. DOI: 10.1016/j.jclepro.2014.05.087.

  • 44. Vafakhah S. Bahrololoom M. & Saeedikhani M. (2016). Adsorption kinetics of cupric ions on mixture of modified corn stalk and modified tomato waste. J. Water Res. Prot. 8(13) 1238–1250. DOI: 10.4236/jwarp.2016.813095.

  • 45. Reddad Z. Gerente C. Andres Y. & Le Cloirec P. (2002). Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ. Sci. Technol. 36(9) 2067–2073. DOI: 10.1021/es0102989.

  • 46. Moreira V.R. Lebron Y.A.R. Freire S.J. Santos L.V.S. Palladino F. Jacob R.S. (2019). Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization equilibrium and kinetics studies. Microchem. J. 145 119–129. DOI: 10.1016/j.microc.2018.10.027.

  • 47. Lacerda E.C.M. dos Passos Galluzzi Baltazar M. dos Reis T.A. do Nascimento C.A.O. Côrrea B. Gimenes L.J. (2019). Copper biosorption from an aqueous solution by the dead biomass of Penicillium ochrochloron. Environ. Monit. Assess. 191 247. DOI: 10.1007/s10661-019-7399-y.

  • 48. Mokkapati R.P. Mokkapati J. & Ratnakaram V.N. (2016). Kinetic isotherm and thermodynamics investigation on adsorption of divalent copper using agro-waste biomaterials Musa acuminata Casuarina equisetifolia L. and Sorghum bicolor. Pol. J. Chem. Technol. 18 68–77. DOI: 10.1515/pjct-2016-0031.

  • 49. Calero M. Blázquez G. Dionisio-Ruiz E. Ronda A. & Martín-Lara M.A.(2013). Evaluation of biosorption of copper ions onto pinion shell. Desalination Water Treat. 51 2411–2422. DOI: 10.1080/19443994.2012.747472.

  • 50. Faix O. (1992). Fourier transform infrared spectroscopy. In S.Y. Lin & C.W. Dence(eds.)Methods in lignin chemistry (pp. 233-241). Berlin Heidelberg: Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-74065-7_16.

  • 51. Collier W.E. Schultz T.P. & Kalasinsky V.F. (1992). Infrared study of lignin: reexamination of aryl-alkyl ether C—O stretching peak assignments. Holzforschung 46(6) 523–528. DOI: 10.1515/hfsg.1992.46.6.523.

  • 52. Ramavandi B. & Asgari G. (2018). Comparative study of sun-dried and oven-dried Malva sylvestris biomass for high--rate Cu(II) removal from waste water. Proc. Saf. Environ. Prot. 116 61–73. DOI: 10.1016/j.psep.2018.01.012.

  • 53. Sinha A. Singh V.N. Mehta B.R. & Khare S.K. (2011). Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillussp. cells simultaneous to its bioremediation. J. Hazard. Mater. 192(2) 620–627. DOI: 10.1016/j.jhazmat.2011.05.103.

  • 54. Langmuir I. (1918). The adsorption of gases on plane surfaces of glass mica and platinum. J. Am. Chem. Soc. 40(9) 1361–1403. DOI: 10.1021/ja02242a004.

  • 55. Freundlich H. (1907). Über die adsorption in lösungen. Z. Für Phys. Chem. 57 385–470. DOI: 10.1515/zpch-1907-5723.

  • 56. Yargıç A.Ş. Yarbay Şahin R.Z. Özbay N. & Önal E. (2015). Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J. Clean. Prod. 88 152–159. DOI: 10.1016/j.jclepro.2014.05.087.

  • 57. Haroon H. Gardazi S.M.H. Butt T.A. Pervez A. Mahmood Q. & Bilal M.(2017). Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies. Pol. J. Chem. Technol. 19(2) 6–15. DOI: 10.1515/pjct-2017-0021.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 58 58 10
PDF Downloads 67 67 11