Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) Schiff base complexes of 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid: Synthesis, Spectroscopic, thermal, and antimicrobial studies

Open access

Abstract

Five divalent transition metals Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes have been synthesized using 3-hydroxy-4-[N-(2-hydroxynaphthylidene)-amino]-naphthalene-1-sulfonic acid (H3L) Schiff base as a ligand derived from the condensation reaction between 4-amino-3-hydroxynaphthalene-1-sulfonic acid and 2-hydroxy-1-naphthalde-hyde. The synthesized complexes were characterized using microanalytical, conductivity, FTIR, electronic, magnetic, ESR, thermal, and SEM studies. The microanalytical values revealed that the metal-to-ligand stoichiometry is 1:1 with molecular formula [M2+(NaL)(H2O)x].nH2O (where x = 3 for all metal ions except of Zn(II) equal x = 1; n = 4, 10, 7, 4, and 6 for Cu(II), Co(II), Ni(II), Mn(II) and Zn(II), respectively). The molar conductivity result indicates that all these complexes are neutral in nature with non-electrolytic behavior. Dependently on the magnetic, electronic, and ESR spectral data, octahedral geometry is proposed for all the complexes except to zinc(II) complex is tetrahedral. Thermal assignments of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. SEM micrographs of the synthesized complexes have a different surface morphologies. The antimicrobial activity data show that metal complexes are more potent than the parent ligand.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Al Zoubi W. & Al Mohanna N. (2014). Membrane sensors based on Schiff bases as chelating ionophores–A review. Spectrochim. Acta Part A 132 854–870. doi.org/10.1016/j.saa.2014.04.176.

  • 2. Al Zoubi W. Al-Hamdani A.A.S. & Kaseem M. (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: a review. Appl. Organomet. Chem. 30 810–817. doi.org/10.1002/aoc.3506.

  • 3. Al Zoubi W. & Ko Y.G. (2017). Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl. Organom. Chem. 31 e3574.

  • 4. Al-Hamdani A.A.S. Balkhi A.M. Falah A. & Shaker S.A. (2016). Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi Chem. Soc. 20 487–501.

  • 5. Duffy K.J. Darcy M.G. Delorme E. Dillon S.B. Eppley D.F. Erickson-Miller C. Giampa L. Hopson C.B. Huang Y. Keenan R.M. Lamb P. Leong L. Liu N. Miller S.G. Price A.T. Rosen J. Shah R. Shaw T.N. Smith H. Stark K.C. Tian S.-S. Tyree C. Wig-gall K.J. Zhang L. & Luengo J.I. (2001). Hydrazinonaphthalene and azonaphthalene thrombopoietin mimics are nonpeptidyl promoters of megakaryocytopoiesis. J. Med. Chem. 44(22) 3730–3745.

  • 6. Shweta Neeraj Asthana S.K. Mishra R.K. & Upadhyay K.K. (2016). Design-specific mechanistic regulation of the sensing phenomena of two Schiff bases towards Al3. RSC Adv. 6 55430–55437.

  • 7. Bose D. Banerjee J. Rahaman S.K.H. Mostafa G. Fun H.K. Bailey W.R.D. Zaworotko M.J. & Ghosh B.K. (2004). Polymeric end-to-end bibridged cadmium(II)thiocyanates containing monodentate and bidentate N-donor organic blockers: supramolecular synthons based on π–π and/or C–H..π interactions. Polyhedron 23 2045–2053.

  • 8. El-Boraey H.A. (2005). Structural and thermal studies of some aroylhydrazone Schiff’s bases-transition metal complexes. J. Therm. Anal. Calorim. 81(2) 339–346.

  • 9. Al-Shirif A.S.M. & Abdel-Fattah H.M. (2003). Thermogravimetric and spectroscopic characterization of trivalent lanthanide chelates with some Schiff bases. J. Therm. Anal. Calorim. 71 643–649.

  • 10. Grivani G. Bruno G. Amiri Rudbari H. & Khalaji A.D. (2012). Synthesis characterization and crystal structure determination of a new oxovanadium (IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene. Inorg. Chem. Commun. 18 15–20.

  • 11. Khalaji A.D. Fejfarova K. & Dusek M. (2010). Synthesis and Characterization of Two Diimine Schiff Bases Derived from 24-Dimethoxybenzaldehyde: The Crystal Structure of NN’-Bis(24 dimethoxybenzylidene)-12-diaminoethane. Acta Chim. Slov. 57 257–261.

  • 12. Khalaji A.D. NajafiChermahini A. Fejfarova K. & Dusek M. (2010). Synthesis characterization crystal structure and theoretical studies on Schiff-base compound 6-[(5-Bromopyridin-2-yl) iminomethyl] phenol. Struct. Chem. 21(1) 153–157.

  • 13. Khandar A.A. & Rezvani Z. (1999). Preparation and thermal properties of the bis [5-((4-heptyloxyphenyl) azo)-N-(4-alkoxyphenyl)-salicylaldiminato] copper (II) complex homologues. Polyhedron 18 129.

  • 14. El-Deen I.M. Belal A.A.M. Farid N.Y. Zakaria R. & Refat M.S. (2015). Synthesis spectroscopic coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand. Spectrochimica Acta Part A 149 771–787.

  • 15. Bauer A.W. Kirby W.M.M. Sherris J.C. & Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 36 493–496.

  • 16. Geary W. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. J. Coord. Chem. Rev. 7 81–122.

  • 17. Kavitha P. & Reddy K.L. (2016). Synthesis spectral characterisation morphology biological activity and DNA cleavage studies of metal complexes with chromone Schiff base. Arabian J. Chem. 9 596–605.

  • 18. Bellamy L.J. (1980). The Infrared Spectra of Complex Molecules Chapman and Hall London.

  • 19. Hanai K. & Maki Y. (1993). Vibrational spectra of β-lactams—III. potassium 2-azetidinone-1-sulfonate and its isotopic compounds. Spectrochim Acta A 49 1131–1137.

  • 20. Wojciechowski K. & Jerzy S. (2000). Effect of the sulphonic group position on the properties of monoazo dyes. Dyes and Pigments 44 137–147.

  • 21. Socrates G. (1980). Infrared Characteristic Group Frequencies. John Wiley and Sons New York.

  • 22. Snehalatha M. Ravikumar C. Sekar N. Jayakumar V.S. & Joe I.H. (2008). F.T-Raman IR and UV-visible spectral investigations and ab initio computations of a nonlinear food dye amaranth. J. Raman Spectrosc. 39 928–936.

  • 23. Socrates G. (2001). Infrared and Raman Characteristic Group Frequencies. John Wiley and Sons Chichester.

  • 24. Lever A.B.P. (1997). Inorganic Electronic Spectroscopy. 2nd ed. Elsevier Amsterdam.

  • 25. Wang H. Zhao P. Shao D. Zhang J. & Zhu Y. (2009). Synthesis characterization and spectra studies on Zn (II) and Cu (II) complexes with thiocarbamide ligand containing Schiff base group. Struct. Chem. 20 995–1003.

  • 26. Raman N. Ravichandran S. & Thangarajan C. (2004). Copper (II) cobalt (II) nickel (II) and zinc (II) complexes of Schiff base derived from benzil-2 4-dinitrophenylhydrazone with aniline. J. Chem. Sci. 116 215–219.

  • 27. Lever A.B.P. (1968). Electronic spectra of some transition metal complexes: Derivation of Dq and B. J. Chem. Edu. 45 711.

  • 28. Ramam N. Kulandaisami A. & Shunmugasundaram A. (2001). Synthesis spectral redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2 3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide. Trans. Met. Chem. 26 131135.

  • 29. Sankhala D.S. Mathur R.C. & Mishra S.N. (1980). Synthesis magnetic and spectral studies on some adducts of manganese (II) acetylacetonate. Indian J. Chem. 19A 75–82.

  • 30. Hathaway B.J. & Billing D.E. (1970). The electronic properties and stereochemistry of mono-nuclear complexes of the copper (II) ion. Coord. Chem. Rev. 5 143–207.

  • 31. Hathaway B.J. (1984). A new look at the stereochemistry and electronic properties of complexes of the copper (II) ion. Struct. Bonding (Berlin) 57 55.

  • 32. Coats A.W. & Redfern J. P. (1964). Kinetic parameters from thermogravimetric data. Nature 201 68–69.

  • 33. Horowitz H.W. & Metzger G.A. (1963). A new analysis of thermogravimetric traces. Anal. Chem. 35 1464–1468.

  • 34. Chourasia P. Suryesh K.K. & Mishra A.P. (1993). Synthesis and structural investigation of some mixed-ligand selenito complexes of cobalt (II). Proc. Ind. Acad. Sci. 105 173–181.

  • 35. Frost A.A. & Pearson R.G. (1961). Kinetics and Mechanism New York; Wiley.

  • 36. Raman N. Raja S.J. & Sakthivel A. (2009). Transition metal complexes with Schiff-base ligands: 4-aminoantipyrine based derivatives–a review. J. Coord. Chem. 62 691–709.

  • 37. Kulkarni A.D. Bagihalli G.B. Patil S.A. & Badami P.S. (2009). Synthesis characterization electrochemical and in-vitro antimicrobial studies of Co(II) Ni(II) and Cu(II) complexes with Schiff bases of formyl coumarin derivatives. J. Coord. Chem. 62 3060–3072.

  • 38. Li F. Feterl M. Mulayana Y. Warner J.M. Collins J.G. & Keene F.R. (2012). In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother. 67 2686–2695.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 16
PDF Downloads 63 63 23