Strontium-based nanosized phosphates as anticorrosive fillers of epoxy and polyurethane coating compositions

Open access

Abstract

Anticorrosive epoxy and polyurethane coatings were compounded using zinc-free nanosized phosphates of strontium (SP) or strontium and aluminum (SAP). For comparison, a nanosized calcium aluminum ammonium phosphate (CAP) and a microsized zinc phosphate (ZP) were tested. Results of salts spray and cyclic corrosion tests revealed better anticorrosive properties of the SAP-based coatings in relation to the samples with the other Zn-free fillers or ZP. Electrochemical noise tests of uncoated steel in aqueous suspensions of the phosphates exhibited similar corrosion inhibition efficiency of the Sr-based phosphates and ZP, and worse anticorrosive features of CAP. Electrochemical impedance spectroscopy did not show better protective properties of ZP-based coatings than the samples with the Zn-free fillers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Roselli S. Romagnoli R. & Deyá C. (2017). The anti-corrosion performance of water-borne paints in long term tests. Prog. Org. Coat. 109 172–178. DOI: 10.1016/j.porgcoat.2017.04.031.

  • 2. Heydarpour M. Zarrabi A. Attar M. & Ramezanzadeh B. (2014). Studying the corrosion protection properties of an epoxy coating containing different mixtures of strontium aluminum polyphosphate (SAPP) and zinc aluminum phosphate (ZPA) pigments. Prog. Org. Coat. 77 160–167. DOI: 10.1016/j.porgcoat.2013.09.003.

  • 3. Kalendová A. (2003). Comparison of the anticorrosion efficiencies of pigments based on condensed phosphates and polyphosphosilicates. Anti-corr. Meth. Mater. 50 82–90. 10.1108/00035590310463957.

  • 4. del Amo B. Romagnoli R. Deyá C. & González J. (2002). High performance water-based paints with non-toxic anticorrosive pigments. Prog. Org. Coat. 45 389–397. DOI: 10.1016/S0300-9440(02)00125-X.

  • 5. Ahmed N. Mohamed M. Mabrouk M. & ElShami A. (2015). Novel anticorrosive pigments based on waste material for corrosion protection of reinforced concrete steel. Constr. Build. Mater. 98 388–396. DOI: 10.1016/j.conbuildmat.2015.08.111.

  • 6. Bethencourt M. Botana F. Marcos M. Osuna R. & Sánchez-Amaya J. (2003). Inhibitor properties of “Green” pigments for paints. Prog. Org. Coat. 46 280–287. DOI: 10.1016/S0300-9440(03)00013-4.

  • 7. Naderi R. Arman S. & Fouladvand S. (2014). Investigation on the inhibition synergism of new generations of phosphate-based anticorrosion pigments. Dyes Pigm. 105 23–33. DOI: 10.1016/j.dyepig.2014.01.015.

  • 8. de Lima-Neto P. de Araújo A. Araújo W. & Correia A. (2008). Study of the anticorrosive behaviour of epoxy binders containing non-toxic inorganic corrosion inhibitor pigments. Prog. Org. Coat. 62 344–350. DOI: 10.1016/j.porg-coat.2008.01.012.

  • 9. Kowalczyk K. Przywecka K. & Grzmil B. (2018). Influence of novel ammonium-modified zinc-free phosphate nanofillers on anticorrosive features of primer-less polyurethane top-coating compositions. J. Coat. Technol. Res. DOI: 10.1007/s11998-018-0119-7.

  • 10. Kowalczyk K. Łuczka K. & Grzmil B. (2015). Preparation and characterization of anticorrosion polyurethane paints and coats based on novel Zn-free phosphates.” J. Coat. Technol. Res. 12 153–165. DOI: 10.1007/s11998-018-0119-7.

  • 11. Kowalczyk K. Łuczka K. Grzmil B. & Spychaj T. (2013). Anticorrosive 2K polyurethane paints based on nanoand microphosphates with high dispersing additive content. Prog. Org. Coat. 76 1088–1094. DOI: 10.1016/j.porgcoat.2013.03.003.

  • 12. Kowalczyk K. Łuczka K. Grzmil B. & Spychaj T. (2012). Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog. Org. Coat. 74 151–157. DOI: 10.1016/j.porgcoat.2011.12.003.

  • 13. Kalendová A. Veselý D. & Brodinová J. (2004). Anticorrosive spinel-type pigments of the mixed metal oxides compared to metal polyphosphates. Anti-Corr. Meth. Mater. 51 6–17. DOI: 10.1108/00035590410512681.

  • 14. Jašková V. & Kalendová A. (2012). Anticorrosive coatings containing modified phosphates. Prog. Org. Coat. 75 328–334. DOI: 10.1016/j.porgcoat.2012.07.019.

  • 15. Gorodylová N. Dohnalová Ž. Šulcová P. Bĕlina P. & Vlček M. (2016). Influence of synthesis conditions on physicochemical parameters and corrosion inhibiting activity of strontium pyrophosphates SrMIIP2O7 (MII=Mg and Zn). Prog. Org. Coat. 93 77–86. DOI: 10.1016/j.porgcoat.2016.01.004.

  • 16. Abd El-Ghaffar M. Youssef E. & Ahmed N. (2004). High performance anticorrosive paint formulations based on phosphate pigments. Pig. Res. Technol. 33 226–237. DOI: 10.1108/03699420410546917.

  • 17. Kalenda P. Kalendová A. & Veselý D. (2006). Properties of anticorrosion pigments depending on their chemical composition and PVC value. Pig. Res. Technol. 35/4 188–199. DOI: 10.1108/03699420610677181.

  • 18. Kalendová A. (2002). Comparison of the efficiencies of anticorrosive pigments based on chemically modified phosphates. Anti-Corr. Meth. Mater. 49 364–372. DOI: 10.1108/00035590210440746.

  • 19. Naderi R. Mahdavian M. & Darvish A. (2013). Electrochemical examining behavior of epoxy coating incorporating zinc-free phosphate-based anticorrosion pigment. Prog. Org. Coat. 76 302–306. DOI: 10.1016/j.porgcoat.2012.09.026.

  • 20. Gawri S. & Balakrishnan K. (1994). The effect of the PVC/CPVC ratio on the corrosion resistance properties of organic coatings. Prog. Org. Coat. 23 363–377. DOI: 10.1016/0033-0655(94)87005-5.

  • 21. Przywecka K. Grzmil B.& Kowalczyk K. (2018). Modyfikacja powierzchniowa i badanie właściwości fizykochemicznych antykorozyjnych pigmentów fosforanowych. In Z. Lendzion-Bieluń & D. Moszyński (Eds.) Postępy w technologii i inżynierii chemicznej 2018 (pp. 192–200). Szczecin: WU ZUT w Szczecinie.

  • 22. Przywecka K. Grzmil B. & Kowalczyk K. (2019). Anticorrosive and physicochemical properties of modified phosphate pigments. Polish J. Chem. Tech. 21 20–23. DOI: 10.2478/pjct-2019-0004.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 9
PDF Downloads 129 129 9