Comparison of photoacoustic, diffuse reflectance, attenuated total reflectance and transmission infrared spectroscopy for the study of biochars

Open access


Four infrared spectroscopic techniques - photoacoustic (PAS), diffuse reflectance (DRS), attenuated total reflectance (ATR) and transmission (TS) - were evaluated for the qualitative analysis of the biochar obtained from willow feedstock during pyrolysis. Increase in pyrolysis temperature resulted in more aromatic and carbonaceous structure of biochars. These changes could easily be detected from Fourier transform infrared (FT-IR) spectral differences. The comparison of the spectra obtained by the four FT-IR techniques allowed to conclude that there are differences in the spectra acquired using different IR technique caused by different signal acquisition. PAS and ATR were the best techniques used in order to obtain spectra with smooth and sharp peaks, in contrast to TS, where bands were less-separated. DRS turned out to be the weakest of all techniques, due to poor spectral quality and poor separation of the bands.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Tag A.T. Duman G. Ucar S. & Yanik J. (2016). Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrol. 120 200-206. DOI: 10.1016/j.jaap.2016.05.006.

  • 2. Lehmann J. Czimczik C. Laird D. & Sohi S. (2009). Stability of biochar in soil In Biochar for Environmental Management: Science and Technology; Lehmann J. Stephen J. Eds.; Earthscan Publ.: London 183-205.

  • 3. Yang C.Q. Simms J.R. (1995). Comparison of photoacoustic diffuse reflectance and transmission infrared spectroscopy for the study of carbon fibers. Fuel 74 543-548. DOI: 10.1016/0016-2361(95)98357-K.

  • 4. Gomez-Serrano V. Piriz-Almeida F. Duran-Valle C.J. &Pastor-Villegas J. (1999) Formation of oxygen structures by air activation. A study by FT-IR spectroscopy. Carbon 37 1517-1528. DOI: 10.1016/S0008-6223(99)00025-1.

  • 5. Yarwood J. (1993). Fourier Transform Infrared Reflection Spectroscopy for surface analysis Analytical Proceedings Surface Analysis 30 13-18.

  • 6. Kim K.H. Kim J.Y. Cho T.S. & Choi J.W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource Technol. 118 158-162. DOI: 10.1016/j.biortech.2012.04.094.

  • 7. Ghani W.A.K. Azlina W. & Da Silva G. (2014). Sawdust- derived biochar: Characterization and CO2 adsorption/ desorption study. J. Appl. Sci. 14 1450-1454. DOI: 10.3923/ jas.2014.1450.1454.

  • 8. Mukome F.N.D. Zhang X. Silva L.C.R. Six J. & Parikh S.J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstock. J. Agric. Food Chem. 61 2196-2204. DOI: 10.1021/jf3049142.

  • 9. Mašek O. Budarin V. Gronnow M. Crombie K. &Brownsort P. (2013). Microwave and slow pyrolysis biochar - comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 100 41-48. DOI: 10.1016/j.jaap.2012.11.015.

  • 10. Cantrell K.B. Hunt P.G. Uchimiya M. Novak J.M. & Ro K.S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol. 107 419-428. DOI: 10.1016/j. biortech.2011.11.084.

  • 11. Liu Y. He Z. & Uchimiya M. (2015). Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Appl. Sci. 9 246-253. DOI: 10.5539/mas.v9n4p246.

  • 12. Kieluweit M. Nico P.S. Johnson M.G. & Kleber M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. & Technol. 44 1247-1253. DOI: 10.1021/es9031419.

  • 13. Chia C.H. Gong B. Joseph S.D. Marjo C.E. Munroe P. & Rich A.M. (2012). Imaging of mineral-enriched biochar by FTIR Raman and SEM-EDX. Vibrational Spectroscopy 62 248-257. DOI: 10.1016/j.vibspec.2012.06.006.

  • 14. Al-Wabel M.I. Al-Omran A. El-Naggar A.H. & Nadeem M. (2013). Pyrolysis temperature induces changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technol. 131 374-379. DOI: 10.1016/j.biortech.2012.12.165.

  • 15. Abdulraazaq H. Jol H. Husni A. & Abu-Bakr R. (2014). Characterization and stabilization of biochar obtained from empty fruit bunch wood and rice husk. BioResources 9 2888-2898. DOI: 10.15376/biores.9.2.2888-2898.

  • 16. Angin D. (2013). Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technol. 128 593-597. DOI: 10.1016/j.biortech.2012.10.150.

  • 17. Jung K.W. Jeong T.U. Kang H.J. Ahn K.H. (2016). Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Bioresource Technol. 211 108-116. DOI: 10.1016/j. biortech.2016.03.066.

  • 18. Qiu Y. Cheng H. Xu C. & Sheng G.D. (2008). Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Research 42 567-574. DOI: 10.1016/j.watres.2007.07.051.

  • 19. Jindo K. Mizumoto H. Sawada Y. Sanchez-Monedero M.A. & Sonoki T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11 6613-6621. DOI: 10.5194/bgd-11-11727-2014.

  • 20. Harris K. Gaskin J. Cabrera M. Miller W. & Das K.C. (2013). Characterization and mineralization rates of low temperature peanut hull and pine chip biochars. Agronomy 3 (2) 294-312. DOI: 10.3390/agronomy3020294.

  • 21. Wang C. Tu Q. Dong D. Strong P.J. Wang H. Sun B. & Wu W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J. Hazard. Mater. 280 409-416. DOI: 10.1016/j.jhazmat.2014.08.030.

  • 22. Cao X. & Harris W. (2010). Properties of dairy-manurederived biochar pertinent to its potential use in remediation. Bioresource Technol. 101 5222-5228. DOI: 10.1016/j.biortech. 2010.02.052.

  • 23. Michaelian K.H. (2010). Photoacoustic IR spectroscopy 2nd Ed.Wiley-VCH Verlag GMBH&Co.

  • 24. Brewer C.E. Schmidt-Rohr K. Satrio J.A. & Brown R.C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy 28 386-396. DOI: 10.1002/ep.10378.

  • 25. Yuan J.H. Xu R.K. & Zhang H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol. 102 3488-3497. DOI: 10.1016/j.biortech.2010.11.018.

  • 26. Oleszczuk P. Jośko I. Futa B. Pasieczna-Patkowska S. Pałys E. & Kraska P. (2014). Effect of pesticides on microorganisms enzymatic activity and plant in biocharamended soil. Geoderma 214-215 10-18. DOI: 10.1016/j. geoderma.2013.10.010.

  • 27. Zielińska A. Oleszczuk P. Charmas B. Skubiszewska- -Zięba J. & Pasieczna-Patkowska S. (2015). Effect of sewage sludge properties on the biochar characteristics. J. Anal. Appl. Pyrolysis 112 201-213. DOI: 10.1016/j.jaap.2015.01.025.

  • 28. Gogna M. & Goacher R.E. (2018). Comparison of three Fourier transform infrared spectroscopy sampling techniques for distinction between lignocellulose samples. BioResources 13(1) 846-860. DOI: 10.15376/biores.13.1.846-860.

  • 29. Faix O. & Böttcher J.H. (1992). The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz als Roh- und Werkstoff 50(6) 221-226. DOI: 10.1007/BF02650312.

  • 30. Zielińska A. & Oleszczuk P. (2015). The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass & Bioenergy 75 235-244. DOI: 10.1016/j.biombioe.2015.02.019.

  • 31. Novak J.M. Lima I. Xing B. Gaskin J.W. Steiner C. Das K.C. Ahmedna M. Rehrah D. Watts D.W. Busscher W.J. & Schomberg H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals Environ. Sci. 3 195-206.

  • 32. Gregg S.J. & Sing K.S.W. (1982). Adsorption Surface Area and Porosity Academic Press London.

  • 33. Qui Y. & Ling F. (2006). Role of surface functionality in the adsorption of anionic dyes on modified polymeric sorbents. Chemosphere 64 963-971. DOI: 10.1016/j.chemosphere.2006.01.003.

  • 34. Zawadzki J. (1989). Infrared Spectroscopy in Surface Chemistry of Carbons in: Chemistry and Physics of Carbon Vol. 21 Thrower P.A. Ed.; Dekker: New York.

  • 35. Morterra C. & Low M.J.D. (1982). The nature of the 1600 cm−1 band of carbons. Spectroscopy Letters 15 689-697.

  • 36. Morterra C. O’Shea M.L. Low M.J.D. (1988). Infrared studies of carbons - IX. The vacuum pyrolysis of non-oxygen- -containing materials: PVC. Materials Chemistry and Physics 20 123-144.

  • 37. Chukanov N.V. (2014). Infrared spectra of mineral species Extended Library Vol. 1 Springer.

  • 38. Bourke J. Manley-Harris M. Fushimi C. Dowaki K. Nunoura T. & Antal M.J. (2007). Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized Charcoal. Industrial Engin. Chem. Res. 46 5954-5967. DOI: 10.1021/ie070415u.

  • 39. Lua A.C. Yang T. & Guo J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. J. Anal. Appl. Pyrolysis 72 279-287. DOI: 10.1016/j.jaap.2004.08.001.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 190 190 3
PDF Downloads 169 169 12