An alternative and indirect statistical modeling method for viscosity estimation and its experimental validation for low styrene content polyester resin

Open access

Abstract

We propose an indirect method of ASTM D-1200 for measurement of viscosity from 0.1 to 30 stokes (St) using Ford cup 5 (range 2~ 12 St) by developing a statistical relation. General purpose low styrene content polyester resin (without adding initiator, hardener and accelerator) was used for viscosity measurement. In existing ASTM D 1200 standard, ford cups (1-4) are used to measure the viscosity up to 2 St, while fifth cup is used for measurement from 2 to 12 St. Viscosity above 12 St is not estimated using existing ASTM D- 1200 method. In contrast, our method and statistical relation proposed in this paper estimates viscosity in the flexible range of 0.1 to 30 St by using Ford cup 5 only. The estimated values were confirmed by existing ASTM D-1200 (0.1 to 12 St) and by using Ubbelohde viscometer (12 to 30 St). Values estimated above 12 St are from the proposed model are also in good conformance (percentage error ~ 5% or less) with experimental results. The satisfaction level of the estimated values with the experiments suggests that the model has also the potential for application to paints, polymer and oil industry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Rajput R.K. (2008). A text book of Fluid Mechanics (Ist ed.). New Delhi: S. Chand limited

  • 2. Harper B.D. & Staab G.H. (1987). A note on the effect of voids upon the hygral and mechanical properties of AS4/3502 graphite/epoxy J. Compos. Mater. 21(3) 280-289. DOI: 10.1177/002199838702100306.

  • 3. Um M.K. Byun J.H. & Isaac M.D. (2009). Similarity relations of resin flow in resin transfer molding process Adv. Compos. Mater. 18(2) 135-152. DOI: 10.1163/156855109X428745.

  • 4. Brouwer W.D. van Herpt E.C.F.C. & Labordus M. (2003). Vacuum injection moulding for large Applications Compos 34(6) 551-558. DOI: 10.1016/S1359-835X(03)00060-5.

  • 5. Kedari V.R. Farah B.I. & Hsiao K.T. (2011). Effects of vacuum pressure inlet pressure and mold temperature on the void content volume fraction of polyester/e-glass fiber composites manufactured with VARTM process J. Compos. Mater. 45 2727-2742. DOI: 10.1177/0021998311415442.

  • 6. Nawaz A. Islam B. Akhtar R. Alamgir K. & Noor S. (2015). Failure of polyester laminated automotive ignition coils influenced by environmental factors. Arab. J. Sci. Eng. 40 3337-3344 (2015) DOI: 10.1007/s13369-015-1789-4.

  • 7. Kulicke W.M. & Clasen C.M. (2004). Viscosimetry of Polymers and Polyelectrolytes (1st ed.). Berlin: Springer Verlag

  • 8. Viswanath D.S. Ghosh .T. Prasad D.H.L. Dutt N.V.K. & Rani K.Y. (2007). viscosity of liquids theory estimation experiment and data (1st ed.). Berlin: Springer

  • 9. Walters K. & Barnes H.A. (1980). Anomalous extensionsal- flow effects in the use of commercial viscometers. In: Astarita G.M. (Eds.) Rheology (pp. 45-62) Newyork Springer.

  • 10. Pereira C.M.C. Nóvoa P. Martins M. Forero S. Hepp F. & Pambaguian L. (2010). Characterization of carbon nanotube 3D-structures infused with low viscosity epoxy resin system Compos. Structures. 92(9) 2252-2257. DOI:10.1016/j. compstruct.2009.08.009.

  • 11. Rahmanian S. Suraya A.R. Roshanravan B. Othmand R.N. Nasser A.H. Zahari R. & Zainudin E.S. (2015). The influence of multiscale fillers on the rheological and mechanical properties of carbon-nanotube-silica-reinforced epoxy composite Mater. & Desi. 88 227-235. DOI: 10.1016/j.matdes.2015.08.149.

  • 12. Vahedi V. Pasbakhsh P. & Chai S.P. (2015). Toward high performance epoxy/halloysite nanocomposites: New insights based on rheological curing and impact properties Mater. & Desi. 68(5) 43-53. DOI: 10.1016/j.matdes.2014.12.010.

  • 13. Zhang Y. An Z. Bai H. Li Q. & Guo .Z. (2015). Characterization and measurement of apparent viscosity of solid particles in fixed beds under high temperature Powder Technol. 284 279-288. DOI: 10.1016/j.powtec.2015.06.069.

  • 14. Lee W.I. Loos A.C. & Springer G.S. (1982) Heat of reaction degree of cure and viscosity of Hercules 3501-6 resin J. Compos. Mater. 16(6) 510-520. DOI: 10.1177/002199838201600605.

  • 15. Dusi M.R. Lee W.I. Peter R.C. & Springer G.S. (1987). Cure kinetics and viscosity of fiberite 976 resin J. Compos. Mater. 21(3) 243-261. DOI: 10.1177/002199838702100304.

  • 16. Halley P.J. & Mackay M.E. (1996). Chemorheology of thermosets: an overview Polymer Eng. Sci. 36(5) 593-609. DOI: 10.1002/pen.10447.

  • 17. Berry G.C. & Fox T.G. (1968). The viscosity of polymer and their concentrated solutions Adv. Polymer Sci. 5(3) 261-357. DOI:10.1007/BFb0050985.

  • 18. Deka A. & Dey N. (2013). Rheological studies of two component high build epoxy and polyurethane based high performance coatings J. Coat. Technol. Res. 10(3) 305-315. DOI: 10.1007/s11998-012-9445-3.

  • 19. Ghannam M.T. & Esmail N. (2006). Flow enhancement of medium-viscosity crude oil Petroleum Sci & Technol 24(8) 985-999. DOI: 10.1081/LFT-200048166.

  • 20. Montgomery D.C. (2006). Design and analysis of experiments. New York: Wiley.

  • 21. Park Y. Hwang J. Bae C. Kim K. Lee J. & Pyo S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics Fuel 162 1-7. DOI: 10.1016/j.fuel.2015.09.008.

  • 22. Young R.J. & Lovell P.A. (1991) Introduction to polymers. Hongkong: Chapman & Hall.

  • 23. McCrum N.G. Buckley C.P. & Bucknall C.B. (1997) Principles of polymer engineering. New York: Oxford University Press.

  • 24. Saleh M.A. Akhtar S. Begum S. Ahmed M.S. & Begum S.K. (2004) Density and viscosity of 1-alkanols Phys. Chem. Liquids 42(6) 615-623. DOI: 10.1080/00319100412331284422.

  • 25. Ren D.H. Fang S. Xu X.J. & Ding B. (2014). Volumetric properties and viscosities of acetic acid with ethylene glycol and diethylene glycol at temperatures from 303.15 to 323.15K Chem Eng Comm. 201(4) 528-544. DOI: 10.1080/00986445.2013.780164.

  • 26. Nawaz A. (2013). Study of the problem of void formation in electrical lamination parts and its removal. MS Dissertation University of Engineering & Technology Peshawar KPK Pakistan

  • 27. Joseph D.D. (1998). Cavitation and the state of stress in a flowing fluid. J. Fluid Mech. 366 367-378. DOI: 10.1017/ S0022112098001530.

  • 28. Yang Y.S. (1996). Viscosities of unsaturated polyester resins: combining effects of prepolymer structure resin composition and temperature J. Appl. Poly. Sci. 60(13) 2387-2395. DOI: 10.1002/(SICI)1097-4628(19960627)60:13<2387::AID--APP10>3.0.CO;2-2.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 263 263 16
PDF Downloads 215 215 19