Membrane reactor for enzymatic depolymerization – a case study based on protein hydrolysis

Open access

Abstract

The efficiency of enzymatic depolymerization in a membrane reactor was investigated. The model analysis was performed on bovine serum albumin hydrolysis reaction led by three different enzymes, for which kinetic equations have different forms. Comparing to a classic reactor, the reaction yield turns out to be distinctly higher for all types of kinetics. The effect arises from increasing (thanks to the proper selectivity of the applied membrane) the concentration of reagents in the reaction volume. The investigations indicated the importance of membrane selectivity election, residence time and at non-competitive inhibition the substrate (biopolymer) concentration in feed stream. Presented analysis is helpful in these parameters choice for enzymatic hydrolysis of different biopolymers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Mahammad S. Prud’homme R.K. Roberts G.R. & Khan S.A. (2006). Kinetics of enzymatic depolymerization of guar galactomannan. Biomacromolecules 7(9) 2583-2590. DOI: 10.1021/bm060333+.

  • 2. Muzzarelli R.A.A Stanic V. & Ramos V. (1998). Enzymatic depolymerization of chitins and chitosans. In: Methods in Biotechnology Vol. 10: Carbohydrate Biotechnology Protocols Ed. C. Bucke © Humana Press Inc. NJ.

  • 3. Slominska L. Grajek W. Grzeskowiak A. & Gocalek M. (1998). Enzymatic starch saccharification in an ultrafiltration membrane reactor. Starch 50(9) 390-396. DOI: 0038- 9056/98/0909-0390$17.50+.50/0.

  • 4. Trusek-Holownia A. & Noworyta A. (2000). Dipeptide enzymatic synthesis in a two-phase membrane reactor. Chem. Pap. 54(6B) 442-447.

  • 5. Nguyenhuynh T. Nithyanandam R. Hwa Chong Ch. &Krishnaiah D. (2017). A review on using membrane reactors in enzymatic hydrolysis of cellulose J. Eng. Sci. Technol. 12(4) 1129-1152.

  • 6. Hang H. Bao S. Zhao M. Wang B. Zhou S. & Jiang B. (2015) Enzyme membrane reactor coupled with nanofiltration membrane process for difructose anhydride III from inulin conversion. Chem. Eng. J. 276 75-82. DOI: 10.1016/j.cej.2015.04.018.

  • 7. Olano-Martin E. Mountzouris K.C. Gibson G.R. & Rastall R.A. (2001). Continuous production of pectic oligosaccharides in an enzyme membrane reactor J. Food Sci. 66 (7) 966-971. DOI: 10.1111/j.1365-2621.2001.tb08220.x.

  • 8. Marquez M.C. & Vazquez M.A. (1999). Modeling of enzymatic protein hydrolysis” Proc. Biochem. 35 111-117. DOI: 10.1016/S0032-9592(99)00041-2.

  • 9. Fernandez A. & Riera F. (2013). β-Lactoglobulin tryptic digestion: a model approach for peptide release. Biochem. Eng. J. 70 88-96. DOI: 10.1016/j.bej.2012.10.001.

  • 10. Rawlings N.D. Barrett A.J. & Bateman A. (2012). MEROPS: the database of proteolytic enzymes their substrates and inhibitors. Nucleic Acids Res. 40 343-350. DOI: 10.1093/nar/gkr987.

  • 11. Trusek-Holownia A. & Noworyta A. (2015). A model of kinetics of the enzymatic hydrolysis of biopolymers - a concept for determination of hydrolysate composition. Chem. Eng. Proc. 89 54-61. DOI: 10.1016/j.cep.2015.01.008.

  • 12. Orecki A. & Tomaszewska M. (2007) The oily wastewater treatment using the nanofiltration process. Pol. J. Chem. Technol. 9 (4) 40-42. DOI: 10.2478/v10026-007-0086-8.

  • 13. Trusek-Holownia A. Przybyl A. & Noworyta A. (2014). Zagospodarowanie odpadowej serwatki w kierunku aktywnych peptydow (in Polish). Inz. Ap. Chem. 53 (4) 314-315.

  • 14. Trusek-Holownia A. Lech M. & Noworyta A. (2016). Protein enzymatic hydrolysis integrated with ultrafiltration: Thermolysin application in obtaining peptides. Chem. Eng. J. 305 61-68. DOI: 10.106/j.cej.2016.05.087.

  • 15. Labus K. Trusek-Holownia A. & Noworyta A. (2015) Kinetics of protein hydrolysis catalyzed by pepsin. In: 42nd International Conference of Slovak Society of Chemical Engineering proceedings Tatranské Matliare Slovakia May 25-29 2015. Ed. Jozef Markoš Slovakia 465-472.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 254 174 5
PDF Downloads 173 108 5