Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications

Open access


The recombinant catalase isolated from a psychrotolerant microorganism belonging to Serratia genus exhibits a high activity in a wide range of pH. Due to a great catalytic potential in operational conditions, it can be used in various industrial applications whereby it acts as a hydrogen peroxide scavenger. To reduce the cost of biocatalyst the enzyme encapsulation into a hydrogel structure was proposed. The obtained results showed a high activity of encapsulated catalase in acidic conditions (pH in range 4.4 - 6.6) and at low temperatures (6-15°C). Moreover, immobilized catalase exhibited a high stability in natural media, especially in milk. Its activity during peroxide decomposition in milk, the possibility of re-using, as well as the fixed bed reactor performance confirmed wide application possibilities. High values of enzyme and substrate concentrations led to the beads burst due to rapid oxygen diffusion from the capsules, thus they are limited.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. WHO Food Additives series no. 5 (1973). Toxicological evaluation of some food additives including anticaking agents antimicrobials antioxidants emulsifiers and thickening agents.

  • 2. Hsu C.L. Chang K.S. & Kuo J.C. (2008). Determination of hydrogen peroxide residues in aseptically packaged beverages using an amperometric sensor based on a palladium electrode. Food Control 19 223-230. DOI: 10.1016/j.foodcont.2007.01.004.

  • 3. Kanyong P. Rawlinson S. & Davis J. (2016). A non- -enzymatic sensor based on the redox of ferrocene carboxylic acid on ionic liquid film-modified screen-printed graphite electrode for the analysis of hydrogen peroxide residues in milk. J. Electroanalyt. Chem. 766 147-151. DOI: https://doi.org/10.1016/j.jelechem.2016.02.006.

  • 4. Law B.A. (2010). Enzymes in dairy product manufacture. In Whitehurst R. J. Oort M. (Eds.) Enzymes in Food Technology 92-93. Wiley-Blackwell A John Wiley & Sons Ltd. Publication.

  • 5. Saha B.A. Ali M.Y. Chakraborty M. Islam Z. & Hira A.K. (2003). Study on the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pakistan J. Nut. 2(1) 36-42. DOI: 10.3923/pjn.2003.36.42.

  • 6. Sooch B.S. Kauldhar B.S. & Puri M. (2017). Catalases. Types Structure Applications and Future Outlook. In R.C. Ray C.M. Rossel (Eds.) Microbial Enzyme Technology in Food Applications 241-250. Boca Raton CRC Press.

  • 7. Loncar N. & Fraaije MW. (2015). Catalases as biocatalysts in technical applications: current state and perspectives. Appl. Microbiol. Biotechnol. 99(8) 3351-3357. DOI: 10.1007/s00253-015-6512-6.

  • 8. Choudhury A.K.R. (2014). Sustainable Textile Wet Processing: Applications of Enzymes in Roadmap to Sustainable Textiles and Clothing. In S.S Muthu (Eds.) Eco-friendly Raw Materials Technologies and Processing Methods 217-219. Springer ISBN 978-981-287-065-0. DOI: 10.1007/978-981-287-065-0.

  • 9. Sarmiento F. Peralta R. & Blamey J.M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Front. Bioeng. Biotechnol. 3 1-15. DOI: 10.3389/fbioe.2015.00148.

  • 10. Homaei A.A. Sariri R. Vianello F. & Stevanato R. (2013). Enzyme immobilization: an update. J. Chem. Biol. 6(4) 185-205. DOI: 10.1007/s12154-013-0102-9.

  • 11. Dogac Y.I. Cinar M. & Teke M. (2015). Improving of Catalase Stability Properties by Encapsulation in Alginate/ Fe3O4 Magnetic Composite Beads for Enzymatic Removal of H2O2. Prep. Biochem. Biotech. 45(2) 144-157. DOI: 10.1080/10826068.2014.907178.

  • 12. Rios G.M. Beelleville M.P. & Paolucci D. et al. (2004). Progress in enzymatic membrane reactors - a review. J. Membrane Sci. 242(1-2) 189-196 DOI: https://doi.org/10.1016/j.memsci.2003.06.004.

  • 13. Franssen M.C.R. Steunenberg P. Scott E.L. et al. (2013). Immobilized enzymes in biorenewables production. Chem. Soc. Rev. 42 6491-6533. DOI: 10.1039/C3CS00004D.

  • 14. Murtinho D. Lagoa A.R. & Garcia F.A.P. et al. (1998). Cellulose Derivatives Membranes as Supports for Immobilisation of Enzymes. Cellulose. 5(4) 299-308. DOI: 10.1023/A:1009255126274.

  • 15. Lowry O. Rosebrough N. Farr A. & Randall R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 265-270.

  • 16. Safarik I. Sabatkova Z. & Safarikova M. (2008). Hydrogen Peroxide Removal with Magnetically Responsive Saccharomyces cerevisiae Cells. J. Agric. Food Chem. 56 7925-7928. DOI: 10.1021/jf801354a.

  • 17. Farkye NY. (2004). Cheese technology. Int. J. Dairy Technol. 5791-98.

  • 18. Trusek-Holownia A. (2003). Synthesis of ZAlaPheOMe the precursor of bitter dipeptide in the two-phase ethyl acetate - water system catalyzed by thermolysin. J. Biotechnol. 102 153-163. DOI: 10.1016/S0168-1656(03)00024-5.

  • 19. Dogac Y.I. & Teke M. (2013) Immobilization of bovine catalase onto magnetic nanoparticles. Prepar. Biochem. Biotechnol. 43 750-765. DOI:10.1080/10826068.2013.773340.

  • 20. Silva L.C.C. (2015). Preservatives and neutralizing substances in milk: analytical sensitivity of official specific and nonspecific tests microbial inhibition effect and residue persistence in milk. Ciência Rural 1-13. DOI: 10.1590/0103-8478cr20141013.

  • 21. Yildiz H. Akyilmaz E. & Dinckaya E. (2004). Catalase Immobilization in Cellulose Acetate Beads and Determination of its Hydrogen Peroxide Decomposition Level by using a Catalase Biosensor. Artif. Cells Blood Substit. Immobil. Biotechnol. 32(3) 443-452. DOI: 10.1081/BIO-2000277507.

  • 22. Görenek G. Akyilmaz E. & Dinckaya E. (2004). Immobilisation of Catalase by Entrapping in Alginate Beads and Catalase Biosensor Preparation for the Determination of Hydrogen Peroxide Decomposition. Art. Cells Blood Subst. 32(3) 453-461. DOI: 10.1081/BIO-200027518.

  • 23. Trusek-Holownia A. & Noworyta A. (2015). Catalase immobilized in capsules in microorganisms removal from drinking water milk and beverages. Desalin. Water Treat. 55(10) 2721-27727. DOI: 10.1080/19443994.2014.939857.

  • 24. Miłek J. Kwiatkowska-Marks S. & Wójcik M. (2011). Immobilization of catalase from Aspergillus niger in calcium alginate gel. Chemik 65(4) 305-308.

  • 25. Al-Mayah A.M.R. (2012). Simulation of Enzyme Catalysis in Calcium Alginate Beads. Enz. Res. 459190 1-13. DOI: 10.1155/2012/459190.

  • 26. Noworyta A. & Trusek-Holownia A. (2004). Modeling of enzymatic conversion in the catalytic gel layer located on a membrane surface. Desalination 162 1-3 327-334. DOI: 10.1016/S0011-9164(04)00066-9.

  • 27. Trusek-Holownia A. & Noworyta A. (2015). Efficient utilization of hydrogel preparations with encapsulated enzymes- a case study on catalase and hydrogen peroxide degradation. Biotechnol. Reports 6 13-19.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 221 15
PDF Downloads 169 169 20