Non-alcoholic beer production – an overview

Open access

Abstract

Through years beer became one of the best known alcoholic beverages in the world. For some reason e.g. healthy lifestyle, medical reasons, driver’s duties, etc. there is a need for soft drink with similar organoleptic properties as standard beer. There are two major approaches to obtain such product. First is to interfere with biological aspects of beer production technology like changes in mashing regime or to perform fermentation in conditions that promote lower alcohol production or using special (often genetic modified) microorganism. Second approach is to remove alcohol from standard beer. It is mainly possible due to evaporation techniques and membrane ones. All these approaches are presented in the paper.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wiśniewski P. (1993). Piwa historie niezwykłe. Warszawa: Print Shops PREGO .

  • 2. Stępień M. (2000). Kodeks Hammurabiego. Alfa-Wero.

  • 3. Cichowski K. (2006). Najstarsze centrum browarnicze w delcie Nilu. Alma Mater UJ. 83 71.

  • 4. Ciałowicz K.M. (2008). 10 lat badań na Wzgórzu Kurczaka. Alma Mater UJ 99 202.

  • 5. Hornsey I.S. (2003). History of Beer and Brewing. London: RSC Publishing. DOI:10.1039/9781847550026.

  • 6. Fałat Z. (2005). Wszystko o piwie. Warszawa-Rzeszów: Ad Oculos.

  • 7. Dylkowski W. (1963). Technologia browarnictwa. Warszawa: Wydawnictwo przemysłu lekkiego i spożywczego.

  • 8. Scurlock J. & Andersen B. (2005). Diagnoses in Assyrian and Babylonian Medicine: Ancient Sources Translations and Modern Medical Analyses. Urbana: University of Illinois Press.

  • 9. D’Arms J.H. (1995). Heavy Drinking and Drunkenness in the Roman World: Four Questions for Historians. O. Murray & M. Tecusan eds. In Vino Veritas. London: British School at Rome 304-317.

  • 10. Powell A.M. (1993). Drugs and Pharmaceuticals in ancient Mesopotamia. The Healing Past 47-67.

  • 11. Nelson M. (2016). To your health! The role of beer in ancient medicine. In W. H. Salazar (Ed.) Beer: Production consumption and health effects (pp. 1-25). Nova Science Publishers.

  • 12. O’Shea R.S. Dasarathy S. & McCullough A.J. (2010). Alcoholic liver disease. Hepatology 51(1) 307-328. DOI:10.1002/hep.23258

  • 13. Fadda F. (1998). Chronic ethanol consumption:from neuroadaptation to neurodegeneration. Prog. Neurobiol. 56(4) 385-431. DOI: 10.1016/S0301-0082(98)00032-X.

  • 14. Hermens D.F. & Lagopoulos J. (2018). Binge drinking and the young brain: A mini review of the neurobiological underpinnings of alcohol-induced blackout. Front. Psychol. 9 1-7. DOI: 10.3389/fpsyg.2018.00012

  • 15. Boffetta P. & Hashibe M. (2006). Alcohol and cancer. Lancet Oncol. 7(2) 149-156. DOI: 10.1016/S1470-2045(06)70577-0

  • 16. Stevens J.F. & Page J.E. (2004). Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 65(10) 1317-1330. DOI: 10.1016/j.phytochem.2004.04.025.

  • 17. Zołnierczyk A.K. Mączka W.K. Grabarczyk M. Wińska K. Woźniak E. & Anioł M. (2015). Isoxanthohumol - Biologically active hop flavonoid. Fitoterapia 103 71-82. DOI: .10.1016/j.fitote.2015.03.007

  • 18. Ayabe T. Ohya R. Kondo K. & Ano Y. (2018). Iso- α-acids bitter components of beer prevent obesity-induced cognitive decline. Scient. Reports 8(1) 4760. DOI: 10.1038/s41598-018-23213-9.

  • 19. Mojka K. (2013). Charakterystyka mlecznych napojów fermentowanych. Probl. Hig. Epidemiol. 94(4)(4) 722-729.

  • 20. Art. 94 pkt 1 Ustawy o podatku akcyzowym (Dz.U. z 2017 r. poz. 43). Poland.

  • 21. Müller M. Bellut K. Tippmann J. & Becker T. (2017). Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. Chem. Bio. Eng. Reviews 5 310-326. DOI:10.1002/cben.201700010

  • 22. Kruger J.E. Lineback D.R. & Stauffer C.E. Chemists A.A. of C. (1987). Enzymes and Their Role in Cereal Technology. American Association of Cereal Chemists. Retrieved from https://books.google.pl/books?id=IEtjQgAACAAJ

  • 23. Esslinger H.M. (2015). Handbook of Brewing. Climate Change 2013 - The Physical Science Basis (Vol. 1). DOI: 10.1017/CBO9781107415324.004.

  • 24. Muller R. (1991). the Effects of Mashing Temperature and Mash Thickness on Wort Carbohydrate Composition. J. Instit. Brewing 97(2) 85-92. DOI: 10.1002/j.2050-0416.1991.tb01055.x.

  • 25. Brányik T. Silva D.P. Baszczyňski M. Lehnert R. Almeida E. & Silva J. B. (2012). A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 108(4) 493-506. DOI: 10.1016/j.jfoodeng.2011.09.020.

  • 26. Ivanov K. Petelkov I. Shopska V. Denkova R. Gochev V. & Kostov G. (2016). Investigation of mashing regimes for low-alcohol beer production. J. Instit.Brewing 122(3) 508-516.DOI: 10.1002/jib.351.

  • 27. Khan A.W. Lamb K.A. & Schneider H. (1988). Recovery of Fermentable Sugars from the Brewers Spent Grains by the Use of Fungal Enzymes. Process Biochem. 23(6) 172-175.

  • 28. Macheiner D. Adamitsch B.F. Karner F. & Hampel W.A. (2003). Pretreatment and Hydrolysis of Brewer’s Spent Grains. Eng. Life Sci. 3(10) 401-405. DOI: 10.1002/elsc.200301831.

  • 29. Schur F. (1983). Ein neues verfharen herstellung von alkoholfreien bier. Proceedings of the 19th Eur. Brewery Convent. Congress 353-360.

  • 30. Perpète P. Collin S. (1999). Contribution of 3-methylthiopropionaldehyde to the worty flavor of Alcohol-free beers. J. Agr. Food Chem. 47(6) 2374-2378. DOI: 10.1021/jf9811323.

  • 31. Attenborough W.M. (1988). Evaluation of processes for the production of low- and non-alcohol beer. Ferment. 2(2) 40-44.

  • 32. Kobayashi F. (2016). Inactivation of beer yeast by microbubbled carbon dioxide at low pressure and quality evaluation of the treated beer. In W. Salazar (Ed.) In beer: Production consumption and health effects (p. 257). Nova science publishers.

  • 33. Verstrepen K. J. Derdelinckx G. Verachtert H. Delvaux F. R. (2003). Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61(3) 197-205. DOI: 10.1007/s00253-002-1200-8.

  • 34. Lebeau T. Jouenne T. & Junter G.A. (1998). Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microbiol. Technol. 22(6) 434-438. DOI: 10.1016/S0141-0229(97)00214-7.

  • 35. Strejc J. Siristova L. Karabin M. Almeida e Silva J. B. & Branyik T. (2013). Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Instit. Brewing. 119(3) 149-155. DOI: 10.1002/jib.72.

  • 36. Klewicka E. (2008). Bakterie kwasu octowego. In Z. Libudzisz (Ed.) Mikrobiologia techniczna. Mikroorganizmy w biotechnologii ochronie środowiska i produkcji żywności T.2 (pp. 59-73). Warszawa: Wydaw. Nauk. PWN.

  • 37. Pilkington P.H. Margaritis A. Mensour N.A. & Russell I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: A review. J. Instit. Brewing. 104(1) 19-31. DOI: 10.1002/j.2050-0416.1998.tb00970.x

  • 38. Tuszyński T. (2008). Immobilizacja drobnoustrojów. Laboratorium 10 34-38.

  • 39. Brányik T. Vicente A. Oliveira R. & Teixeira J. (2004). Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 88(1) 84-93. DOI: 10.1002/bit.20217.

  • 40. Trusek-Holownia A. (2008). Wastewater treatment in a microbial membrane bioreactor - a model of the process. Desalination 221(1-3) 552-558. DOI: 10.1016/j.desal.2007.01.116 .

  • 41. Bony M. Bony M. Thines-sempoux D. Thines-Sempoux D. Barre P. Barre P. & Blondin B. (1997). Localization and Cell Surface Anchoring of the. Microbiology 179(15) 4929-36.

  • 42. Verbelen P.J. De Schutter D.P. Delvaux F. Verstrepen K.J. & Delvaux F.R. (2006). Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Letters 28(19) 1515-1525. DOI: 10.1007/s10529-006-9132-5.

  • 43. Naydenova V. Badova M. Vassilev S. Iliev V. Kaneva M. & Kostov G. (2014). Encapsulation of brewing yeast in alginate/chitosan matrix: Lab scale optimization of lager beer fermentation. Biotechnol. Biotechnolog. Equipment. 28(2) 277-284. DOI: 10.1080/13102818.2014.910373.

  • 44. Mensour N.A. Margaritis A. Briens C.L. Pilkington H. & Russell I. (1997). New Developments in the Brewing Industry Using Inmobilised Yeast Cell Bioreactor Systems. J. Inst. Brewing. 103(6) 363-370. DOI: 10.1002/j.2050-0416.1997.tb00965.x.

  • 45. Van Dieren B. (1995). Yeast metabolism and the production of alcohol-free beer. In Immobilized Yeast Applications in the Brewery Industry (pp. 66-76). Espoo Finland: Hans Carl Getranke-Fachverlag.

  • 46. Inez B. Figueiredo C. Fontes A. Patrick P. Pimenta D.S. & Souza C. De. (2017). Crossing Techniques Using Cachaça ( Brazilian Spirit ) Yeasts 83(20) 1-17.

  • 47. Puerari C. Strejc J. Souza A.C. Karabi n M. Schwan R.F. & Bra¡nyik T. (2016). Optimization of alcohol-free beer production by lager and cachaca yeast strains using response surface methodology. J. Inst. Brewing 122(1) 69-75. DOI: 10.1002/jib.306

  • 48. Navrátil M. Dömény Z. Šturdík E. Šmogrovičová D. & Gemeiner P. (2002). Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle. Biotechnol. Appl. Biochem. 35(2) 133. DOI: 10.1042/BA20010057.

  • 49. Mortazavian A.M. Razavi S.H. Mousavi S.M. Malganji S. & Sohrabvandi S. (2014). The effect of Saccharomyces strain and fermentation conditions on quality prameters of non-alcoholic beer. J. Paramed. Sci. 5(3) 21-26.

  • 50. De Francesco G. Turchetti B. Sileoni V. Marconi O. & Perretti G. (2015). Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Instit. Brewing 121(1) 113-121. DOI: 10.1002/jib.185.

  • 51. Baranowski K. Salamon A. Michałowska D. Baca E. & Kraśna D. (2002). Sposób wytwarzania piwa o małej zawartości alkoholu etylowego oraz szczepy drożdży do wytwarzania piwa o małej zawartości alkoholu etylowego. Patent No. 98846 Poland.

  • 52. Mohammadi A. Razavi S.H. Mousavi S.M. & Rezaei K. (2011). A Comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae Saccharomyces ludwigii and Saccharomyces rouxii on brewer’s spent grain. Brazil. J. Microbiol. 42(2) 605-615. DOI: 10.1590/S1517-83822011000200025.

  • 53. Gibson B. Geertman J.M.A. Hittinger C.T. Krogerus K. Libkind D. Louis E.J. & Sampaio J.P. (2017). New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 17(4) 1-13. DOI: 10.1093/femsyr/fox038.

  • 54. Lide D.R. Baysinger G. Berger L.I. Goldberg R. N. Kehiaian H.V Kuchitsu K. & Zwillinger D. (2004). CRC Handbook of Chemistry and Physics. CRC Press.

  • 55. Huige N.J. Sanchez G.W. & Leidger A.R. (1990). Process for Preparing a Nonalcoholic (Less the 0.5 Volume Percent Alcohol) Malt Beverage. Patent No.4970082A USA.

  • 56. Caluwaerts H.J.J. (1995). Process for the manufacture of an alcohol-free beer having the organoleptic properties of a lager type pale beer. Patent No. 5384135 USA.

  • 57. Sohrabvandi S. Mousavi S.M. Razavi S.H. Mortazavian A.M. & Rezaei K. (2010). Alcohol-free beer: Methods of production sensorial defects and healthful effects. Food Rev. Internat. 26(4) 335-352. DOI: 10.1080/87559129.2010.496022.

  • 58. Craig A.J.M. (1991). Counter-current gas-liquid contacting device. Patent No. 4995945A USA.

  • 59. Wright A.J. & Pyle D.L. (1996). An investigation into the use of the spinning cone column for in situ ethanol removal from a yeast broth. Proc. Biochem. 31(7) 651-658. DOI: 10.1016/S0032-9592(96)00017-9.

  • 60. Huerta-Pérez F. & Pérez-Correa J.R. (2018). Optimizing ethanol recovery in a spinning cone column. J. Taiwan Inst. Chem. Eng. 83 1-9. DOI: 10.1016/j.jtice.2017.11.030.

  • 61. Moreira da Silva P. & De Wit B. (2008). Spinning cone column distillation - innovative technology for beer dealcoholisation. Cerevisia 33 91-95.

  • 62. Leskosek I.J. & Mitrovic M. (1994). Optimization of beer dialysis with cuprophane membranes. J. Inst. Brew. 100 287-292.

  • 63. Moonen H. & Niefind H.J. (1982). Alcohol reduction in beer by means of dialysis. Desalination 41(3) 327-335. DOI: 10.1016/S0011-9164(00)88733-0.

  • 64. Leskošek I. Mitrović M. & Nedović V. (1995). Factors influencing alcohol and extract separation in beer dialysis. World J Microbiol. Biotechnol. 11(5) 512-514. DOI: 10.1007/BF00286364.

  • 65. Greenlee L.F. Lawler D.F. Freeman B.D. Marrot B. & Moulin P. (2009). Reverse osmosis desalination: Water sources technology and today’s challenges. Water Res. 43(9) 2317-2348. DOI: 10.1016/S0011-9164(03)00373-4.

  • 66. Noworyta A. Koziol T. & Trusek-Holownia A. (2003). A system for cleaning condensates containing ammonium nitrate by the reverse osmosis method. Desalination 156 (1-3) 397-402. DOI: 10.1016/j.desal.2015.12.011.

  • 67. Ali W. Rehman W.U. Younas M. Ahmad M.I. & Gul S. (2015). Reverse osmosis as one-step wastewater treatment : a case study on groundwater pollution. Pol. J. Chem. Technol. 17(4) 42-48. DOI: 10.1515/pjct-2015-0067.

  • 68. Jastřembská K. Jiránková H. & Mikulášek P. (2017). Dealcoholisation of standard solutions by reverse osmosis and diafiltration. Desalin. Water Treat. 75 357-362. DOI: 10.5004/dwt.2017.20544.

  • 69. Catarino M. Mendes A. Madeira L.M. & Ferreira A. (2007). Alcohol removal from beer by reverse osmosis. Separ. Sci. Technol. 42(13) 3011-3027. DOI: 10.1080/01496390701560223.

  • 70. Gnekow B.R. (1991). Low and non-alcoholic beverages produced by simultaneous double reverse osmosis. Patent No.4999209A USA.

  • 71. Criscuoli A. Drioli E. Capuano A. Memoli B. & Andreucci V.E. (2002). Human plasma ultrafiltrate purification by membrane distillation: process optimisation and evaluation of its possible application on-line. Desalination 147 147-148. DOI: 10.1016/S0011-9164(02)00602-1.

  • 72. Ali A. Quist-Jensen C.A. Drioli E. & Macedonio F.(2018). Evaluation of integrated microfiltration and membrane distillation/crystallization processes for produced water treatment Desalination 434 161-168. DOI: 10.1016/j.desal.2017.11.035.

  • 73. Wang Q. Li N. Bolto B. Hoang M. & Xie Z. (2016). Desalination by pervaporation: A review. Desalination 387 46-60. DOI: 10.1016/j.desal.2016.02.036.

  • 74. Feng X. & Huang R.Y.M. (1997). Liquid Separation by Membrane Pervaporation: A Review. Industr. Eng. Chem. Res.36(4) 1048-1066. DOI: 10.1021/ie960189g.

  • 75. Kaminski W. Marszalek J. & Tomczak E. (2018). Water desalination by pervaporation - Comparison of energy consumption. Desalination 433 89-93. DOI: 10.1016/j.desal.2018.01.014.

  • 76. Smitha B. Suhanya D. Sridhar S. & Ramakrishna M. (2004). Separation of organic-organic mixtures by pervaporation- A review. J. Membr. Sci. 241(1) 1-21. DOI: 10.1016/j.memsci.2004.03.042.

  • 77. Noworyta A. Trusek-Holownia A. Mielczarski S. & Kubasiewicz-Ponitka M. (2006). An integrated pervaporationbiodegradation process of phenolic wastewater treatment. Desalination 198(1-3) 191-197. DOI: 10.1016/j.desal.2006.01.025.

  • 78. Mangindaan D. Khoiruddin K. & Wenten I.G. (2018). Beverage dealcoholization processes: Past present and future. Trends Food Sci. Technol. 71 36-45. DOI: 10.1016/j. tifs.2017.10.018.

  • 79. Olmo Á. Del Blanco C.A. Palacio L. Prádanos P. & Hernández A. (2014). Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. J. Food Eng.133 1-8. DOI: 10.1016/j.jfoodeng.2014.02.014.

  • 80. Paz A.I. Blanco C.A. Andrés-Iglesias C. Palacio L. Prádanos P. & Hernández A. (2017). Aroma recovery of beer flavors by pervaporation through polydimethylsiloxane membranes. J. Food Proc. Eng.40(6). DOI: 10.1111/jfpe.12556.

  • 81. Onsekizoglu P. (2012). Membrane Distillation: Principle Advances Limitations and Future Prospects in Food Industry Distillation - Advances from Modeling to Applications Sina Zereshki (Ed.) ISBN: 978-953- 51-0428-5.

  • 82. Varavuth S. Jiraratananon R. & Atchariyawut S. (2009). Experimental study on dealcoholization of wine by osmotic distillation process. Separ. Purif. Technol. 66(2) 313-321. DOI: 10.1016/j.seppur.2008.12.011.

  • 83. Barancewicz M. & Gryta M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chem. Papers 66(2) 85-91. DOI: 10.2478/s11696-011-0088-0.

  • 84. Gryta M. (2018). The long-term studies of osmotic membrane. Chem. Pap. 72 99-107. DOI: 10.1007/s11696-017-0261-1.

  • 85. Kujawa J. Guillen-Burrieza E. Arafat H.A. Kurzawa M. Wolan A. Kujawski W. (2015). Raw juice concentration by osmotic membrane distillation process with hydrophobic polymeric membranes. Food Bioproc. Technol. 8 (10) 2146-2158 DOI: 10.1007/s11947-015-1570-4.

  • 86. Drioli E. (2017) Membrane Distillation MDPI Basel Switzerland ISBN 978-3-03842-460-4.

  • 87. Purwasasmita M. Kurnia D. Mandias F.C. Khoiruddin Wenten I. G. (2015). Beer dealcoholization using non-porous membrane distillation. Food Bioprod. Proces. 94 180-186. DOI: 10.1016/j.fbp.2015.03.001.

  • 88. Liguori L. De Francesco G. Russo P. Perretti G. Albanese D. & Di Matteo M. (2015). Production and characterization of alcohol-free beer by membrane process. Food Bioprod. Proces. 94 158-168. DOI: 10.1016/j.fbp.2015.03.003.

  • 89. Ritchie H. & Roser M. (2018). Alcohol consumption. Retrieved May 29 2018 from https://ourworldindata.org/alcohol-consumption

  • 90. Wójcik H. (2018). Wzrasta popularność piwa bezalkoholowego. To najszybciej rosnący segment rynku w Polsce. Retrieved May 29 2018 from https://www.wiadomoscihandlowe.pl/artykuly/wzrasta-popularnosc-piwa-bezalkoholowego-to-najszy46382

  • 91. Riu-Aumatell M. Miró P. Serra-Cayuela A. Buxaderas S. & López-Tamames E. (2014). Assessment of the aroma profiles of low-alcohol beers using HS-SPME-GC-MS. Food Resear. Internat. 57 196-202. DOI: 10.1016/j.foodres.2014.01.016.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 427 428 67
PDF Downloads 489 489 79