Controlled-release urea encapsulated by ethyl cellulose/butyl acrylate/vinyl acetate hybrid latex

Open access


Fertilizer encapsulation through polymer membranes can reduce fertilizer losses and minimize environmental pollution. In this paper, an emulsion of ethyl cellulose (EC)/vinyl acetate (VAc)/butyl acrylate (BA) was successfully prepared by pre-emulsified semi-continuous seed emulsion polymerization. EC/BA/VAc films showed biodegradability. The influence of the EC content on the properties of EC/BA/VAc films was also investigated by DSC, a water absorbency analysis, etc. Controlled-release urea encapsulated by EC/BA/VAc latex was prepared in a film coating machine and conformed to the standards for slow-release fertilizers of the Committee of European Normalization. The release of urea from controlled-release urea encapsulated by EC/BA/VAc latex containing 0%, 5%, 10%, and 15% EC was 75.1%, 65.8%, 70.1% and 84.1%, respectively, after 42 days, and controlled-release urea encapsulated by EC/BA/VAc latex (5% EC) had the best controlled-release ability. Therefore, controlled-release urea encapsulated by EC/BA/VAc latex has many potential applications in agricultural industry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Elbarbary A.M. & Ghobashy M.M. (2017). Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation. Radiochimica Acta 105 (10) 865-876. DOI: 10.1515/ract-2016-2679.

  • 2. Wei Y. Li J. Li Y. Zhao B. Zhang L. Yang X. & Chang J. (2017). Research on permeability coefficient of a polyethylene controlled-release film coating for urea and relevant nutrient release pathways. Polym. Test. 59 90-98. DOI: 10.1016/j.polymertesting.2017.01.019.

  • 3. Sabadini R.C. Silva M.M. Pawlicka A. & Kanicki J. (2008). Gellan gum-OO’-bis(2-aminopropyl)-polyethylene glycol hydrogel for controlled fertilizer release. J. Appl. Polym. Sci. 135(2) 45636-45642. DOI: 10.1002/app.45636.

  • 4. Hong K. & Park S. (2000). Polyurea microcapsules with different structures: Preparation and properties. Appl. Polymer. Sci. 78(4) 894-898. DOI: 10.1002/1097-4628(20001024)78:4<894::AID -APP240> 3.0.CO;2-9.

  • 5. Kumbar S.G. Kulkarni A.R. Dave A.M. & Aminabha T.M. (2001). Encapsulation efficiency and release kinetics of solid and liquid pesticides through urea formaldehyde crosslinked starch guar gum and starch guar gum matrices. Appl. Polym. Sci. 82 2863-2866. DOI: 10.1002/app.2141.abs.

  • 6. Han X. Chen S. & Hu X. (2009). Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination. 240 21-26. DOI: 10.1016/j.desal.2008.01.047.

  • 7. Chen L. Xie Z. Zhuang X. Chen X. & Jing X. (2008). Controlled release of urea encapsulated by starch-g- -poly(L-lactide). Carbohy. Polym. 72 342-348. DOI: 10.1016/j. carbpol.2007.09.003.

  • 8. Cruz D.F. Bortoletto-Santos R. Guimarães G.G.F. Polito W.L. & Ribeiro C. (2017). Role of polymeric coating on the phosphate availability as a fertilizer: insight from phosphate release by castor polyurethane coatings. J. Agric. Food Chem. 65(29) 5890-5895. DOI: 10.1021/acs.jafc.7b01686.

  • 9. Yang Y.C. Tong Z.H. Geng Y.Q. Li Y.C. & Zhang M. (2013). Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled- release and water-retention urea fertilizers. J. Agric. Food Chem. 61 (34) 8166-8174. DOI: 10.1021/jf402519t.

  • 10. Qiao D. Liu H. Yu L. Bao X. Simon G.P. Petinakis E. & Chen L. (2016). Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 147 146-154. DOI: 10.1016/j. carbpol.2016.04.010.

  • 11. Zhang S.G. Yang Y.C. Gao B. Li Y.C. & Li Z. (2017). Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. J. Mater. Chem. A. 5 19943-19953. DOI: 10.1039/ C7TA06014A.

  • 12. Desai J. Alexander K. & Riga A. (2006). Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308 115-123. DOI: 10.1016/j.ijpharm.2005.10.034.

  • 13. Tarvainen M. Sutinen R. Peltonen S. & Mikkonen H. (2003). Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur. J. Pharm. Sci. 19 363-37. DOI: 10.1016/ S0928-0987(03)00137-4.

  • 14. Pérez-García S. Fernández-Pérez M. Villafranca-Sánchez M. González-Pradas E. & Flores-Céspedes F. (2007). Controlled Release of Ammonium Nitrate from Ethylcellulose Coated Formulations. Ind. Eng. Chem. Res. 46 3304-3311. DOI: 10.1021/ie061530s.

  • 15. Wang D. Chen C. Xuan Y. Huang Y. & Shen J. (2009). Synthesis and Characterizations of Graft Copolymer of Ethylcellulose with Poly(caprolactone monoacrylate). Polym. J. 41(1) 69-73. DOI: 10.1295/polymj.PJ2008032.

  • 16. Liu W. Liu R. Li Y. Kang H. Shen D. Wu M. & Huang Y. (2009). Self-assembly of ethyl cellulose-graft-polystyrene copolymers in acetone. Polymer. 50 211-217. DOI: 10.1016/j.polymer.2008.10.060.

  • 17. Kang H. Liu W. Liu R. & Huang Y. (2008). A Novel Amphiphilic Ethyl Cellulose Grafting Copolymer with Poly(2-Hydroxyethyl Methacrylate) Side Chains and Its Micellization. Macromol. Chem. Phys. 209 424-430. DOI: 10.1002/ macp.200700363.

  • 18. Abdel-Razik E.A. (1996). Aspects of thermal graft copolymerization of methyl methacrylate onto ethyl cellulose in homogeneous media. Carbohyd. Polym. 31 23-21. DOI: 10.1016/j.sna.2018.06.036.

  • 19. Shen D. Yu H. & Huang Y. (2005). Densely Grafting Copolymers of Ethyl Cellulose through Atom Transfer Radical Polymerization. J. Polym. Sci. Pol. Chem. 43 4099-4108. DOI: 10.1002/pola.20908.

  • 20. Tang X. Gao L. Fan X. & Zhou Q. (2007). Controlled Grafting of Ethyl Cellulose with Azobenzene-Containing Polymethacrylates via Atom Transfer Radical Polymerization. J. Polym. Sci. Pol. Chem. 45 1653-1660. DOI: 10.1002/pola.21932.

  • 21. Yuan W. Yuan J. Zhang F. & Xie X. (2007). Syntheses Characterization and in Vitro Degradation of Ethyl Cellulose- -graft-poly(-caprolactone)-block-poly (L-lactide) Copolymers by Sequential Ring-Opening Polymerization. Biomacromolecules. 8 1101-1108. DOI: 10.1021/bm0610018.

  • 22. Chen R. Chu F. Gauthier C. Chazeau L. Chaduc I. Bourgeat-Lami E. & Lansalot M. (2010). New Ethyl Cellulose/ Acrylic Hybrid Latexes and Coatings via Miniemulsion Polymerization. J. Polym. Sci. Pol. Chem. 48 2329-2339. DOI: 10.1002/pola.23998.

  • 23. Li Y. Liao S. Wu W. Zhen D. & Xiao Z. (2012). Synthesis and characterization of EC/ BA / VAc hybrid latexes via pre-emulsified semi-continuous seed emulsion polymerization. Adv. Mater. Res. 550-553 183-187. DOI: 10.4028/www.

  • 24. General Administration of Quality Supervision Inspection and Quarantine of China (AQSIQ). (2006). Plastics - Determination of tensile properties - Part 3: Test conditions for films and sheets (GB/T1040.3-2006) (in Chinese).

  • 25. Knorst M.T. Neubert R. & Wohlrab W. (1997). Analytical methods for measuring urea in pharmaceutical formulations. J. Pharmaceut. Biomed. 15(11) 1627-1632. DOI: 10.1016/S0731-7085(96)01978-4.

  • 26. Zhu J. Dong X. Wang X. & Wang Y. (2010). Preparation and properties of a novel biodegradable ethyl cellulose grafting copolymer with poly (p-dioxanone) side-chains. Carbohyd. Polym. 80 350-359. DOI: 10.1016/j.carbpol.2009.11.027.

  • 27. Teramoto Y. & Nishio Y. (2003). Cellulose diacetate- -graft-poly(lactic acid)s: synthesis of wide-ranging compositions and their thermal and mechanical properties. Polymer. 44 2701-2709. DOI: 10.1016/S0032-3861(03)00190-3.

  • 28. Gambash S. Kochba M. & Avnimelech Y. (1990). Studies on slow-release fertilizers II. A method for evaluation of nutrient release rate from slow-releasing fertilizers. Soil Sci. 150(1) 446-450. DOI: 10.1097/00010694-199007000-00007.

  • 29. Trenkel M.E. (1997). International Fertilizer Industry Association. International Fertilizer Industry Association Stratospheric Ozone HMSO London.

  • 30. Shaviv A. (2001). Advances in Controlled Release of Fertilizers. Advances in Agronomy. 71 1-49. DOI: 10.1016/ S0065-2113(01)71011-5.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 189 17
PDF Downloads 304 225 31