Improving the Carbon Dioxide Uptake Efficiency of activated Carbons Using a Secondary Activation With Potassium Hydroxide

Open access

Abstract

Secondary activation of commercial activated carbon (AC) ORGANOSORB 10-CO was carried out at 600, 700 and 800oC with mass ratios of potassium to AC (K/AC) in range 1-3. Crucial samples have shown following CO2 uptakes and SSA - 3.90 mmol/g and 1225 m2/g, 4.54 mmol/g and 1546 m2/g, 4.28 and 1717 m2/g for pristine material and samples obtained at 700oC with K/AC = 2 and at 800oC with K/AC = 3 respectively. Last sample also indicated signifi cant mesopore volume increase in diameter range 2-5 nm, from 0.11 to 0.24 cm3/g. CO2 uptake increase was explained by formation of micropores up to diameter of 0.8 nm, which distribution was established from CO2 sorption using DFT. Surface chemistry of all samples has not changed during modifi cation, what was proven by XPS. Moreover, deeper incorporation of potassium ions into graphite at higher temperatures was observed as confi rmed with EDS, XPS and XRD.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. NASA’s Goddard Institute for Space Studies. Retrieved June 29 2018 from https://climate.nasa.gov/vital-signs/global--temperature/

  • 2. Pfeffer W.T. Harper J.T. & O’Neel S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321 1340-1343. DOI: 10.1126/science.1159099.

  • 3. Wallace J.M. & Hobbs P.V. (2006). Atmospheric Science An Introductory Survey (2nd ed.). Seattle USA: Elsevier

  • 4. Etheridge D.M. Steele L.P. Langenfelds R.L. Francey R.J. Barnola J.M. & Morgan V.I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic and fi rn. J. Geophys. Res.-Atmos. 101 4115-4128. DOI: https://doi.org/10.1029/95JD03410.

  • 5. Tans P. & Keeling R. Trends in Atmospheric Carbon Dioxide. Retrieved June 29 2018 from https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html

  • 6. Gęsikiewicz-Puchalska A. Zgrzebnicki M. Michalkiewicz B. Narkiewicz U. Morawski A.W. & Wrobel R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309 159-171. DOI: https://doi.org/10.1016/j.cej.2016.10.005.

  • 7. Harald D. Frisvold P. Gunningham N. Jaccard M. Langhelle O. Meadowcroft J. Praetorius B. Scrase I. Sharp J. Sinclair D. Stephens J.C. Tjernshaugen A. Vergragt P.J. von Stechow C. & Watson J. (2009). Caching the Carbon the Politics and Policy of Carbon Capture and Storage. Chelteham: Edward Elgar Publishing Limited.

  • 8. Młodzik J. Sreńscek-Nazzal J. Narkiewicz U. Morawski A.W. Wróbel R.J. & Michalkiewicz B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys.Pol. A. 129 402-405. DOI: 10.12693/APhysPolA.129.402.

  • 9. Sreńscek-Nazzal J. Narkiewicz U. Morawski A.W. Wróbel R. Gęsikiewicz-Puchalska A. & Michalkiewicz B. (2016). Modifi cation of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129 394-401. DOI: 10.12693/APhysPolA.129.394.

  • 10. Glonek K. Sreńscek-Nazzal J. Narkiewicz U. Morawski A.W. Wróbel R.J. & Michalkiewicz B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129 158-161. DOI: 10.12693/APhysPolA.129.158.

  • 11. Kapica-Kozar J. Kusiak-Nejman E. Wanag A. Kowalczyk Ł. Wrobel R.J. Mozia S. & Morawski A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202 241-249. DOI: https://doi.org/10.1016/j.micromeso.2014.10.013.

  • 12. Kapica-Kozar J. Piróg E. Wrobel R.J. Mozia S. Kusiak-Nejman E. Morawski A.W. Narkiewicz U. & Michalkiewicz B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231 117-127. DOI: https://doi. org/10.1016/j.micromeso.2016.05.024.

  • 13. Kapica-Kozar J. Piróg E. Kusiak-Nejman E. Wrobel R.J. Gęsikiewicz-Puchalska A. Morawski A.W. Narkiewicz U. & Michalkiewicz B. (2017). Titanium dioxide modifi ed with various amines used as sorbents of carbon dioxide. New J. Chem. 41(4) 1549-1557. DOI: 10.1039/C6NJ02808J.

  • 14. Kapica-Kozar J. Michalkiewicz B. Wrobel R.J. Mozia S. Piróg E. Kusiak-Nejman E. Serafi n J. Morawski A.W. & Narkiewicz U. (2017). Adsorption of carbon dioxide on TEPAmodifi ed TiO2/titanate composite nanorods. 41 7870-7885. DOI: 10.1039/C7NJ01549F.

  • 15. Figueiredo J.L. (2013). Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A. 1 9351-9364. DOI: 10.1039/C3TA10876G.

  • 16. Serafi n J. Narkiewicz U. Morawski A.W. Wrobel R.J. & Michalkiewicz B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18 73-79. DOI: https://doi. org/10.1016/j.jcou.2017.01.006.

  • 17. Danish M. & Ahmad T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sust. Energ. Rev. 87 1-21. DOI: https://doi.org/10.1016/j.rser.2018.02.003.

  • 18. Wiśniewska M. Nowicki P. Nosal-Wiercińska A. Pietrzak R. Szewczuk-Karpisz K. Ostolska I. & Sternik D. (2017). Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloid Surface A. 514 137-145. DOI: https://doi.org/10.1016/j. colsurfa.2016.11.053.

  • 19. Popa N. & Visa M. (2017). The synthesis activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Adv. Powder Technol. 28(8) 1866-1876. DOI: https://doi.org/10.1016/j.apt.2017.04.014.

  • 20. Qu S. Wan J. Dai C. Jin T. & Ma F. (2018). Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloy Compd. 751 107-116. DOI: https://doi.org/10.1016/j.jallcom.2018.04.123.

  • 21. Górka J. & Jaroniec M. (2011). Hierarchically porous phenolic resin based carbons obtained by block copolymer colloidal silica templating and post synthesis activation with carbon dioxide and water vapor. Carbon 49 154-160. DOI: https://doi.org/10.1016/j.carbon.2010.08.055.

  • 22. Meng L.Y. & Park S.J. (2014). Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole. J. Solid State Chem. 281 90-94. DOI: https://doi. org/10.1016/j.jssc.2014.06.005.

  • 23. Sreńscek-Nazzal J. Narkiewicz U. Morawski A.W. Wrobel R.J. & Michalkiewicz B. (2016). The increase of the microporosity and CO2 adsorption capacity of the commercial activated carbon CWZ-22 by KOH treatment. In R.S. Dariani (Ed) Microporous and mesoporous materials (2-19). Rijeka: InTech. DOI: 10.5772/63672.

  • 24. Arami-Niya A. Daud W.M.A.W. & Mjalli F.S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des. 89(6) 657-664.DOI: https://doi.org/10.1016/j.cherd.2010.10.003.

  • 25. Mitra S. (2016). U.S. Patent No. 9938152. Washington D.C.: U.S. Patent and Trademark Offi ce.

  • 26. Guskos N. Typek J. Maryniak M. Narkiewicz U. Kucharewicz I. & Wróbel R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Mater. Sci. Poland23(4) 102-106.

  • 27. Wrobel R.J. Hełminiak A. Arabczyk W. & Narkiewicz U. (2014). Studies on the Kinetics of Carbon Deposit Formation on Nanocrystalline Iron Stabilized with Structural Promoters. J. Phys. Chem. C. 118(28) 15434-15439. DOI: 10.1021/jp4108377.

  • 28. Yu K. Li J. Qi H. & Liang Ce. (2018). High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diam. Relat. Mater.86 139-145. DOI: https://doi.org/10.1016/j.diamond.2018.04.019.

  • 29. Młodzik J. Wróblewska A. Makuch E. Wróbel R.J. & Michalkiewicz B. (2016). Fe/EuroPh catalyst for limonene oxidation to 12-epoxylimonene its diol carveol carvone and perillyl alcohol. Catal. Today 268 111-120. DOI: https://doi.org/10.1016/j.cattod.2015.11.010.

  • 30. Glonek K. Wróblewska A. Makuch E. Ulejczyk B. Krawczyk K. Wróbel R.J. Koren Z.C. & Michalkiewicz B. (2017). Oxidation of limonene using activated carbon modifi ed in dielectric barrier discharge plasma. Appl. Surf. Sci.420 873-881. DOI: https://doi.org/10.1016/j.apsusc.2017.05.136.

  • 31. Pełech R. Milchert E. & Wróbel R. (2006). Adsorption dynamics of chlorinated hydrocarbons from multi-component aqueous solution onto activated carbon. J. Hazard. Mater. 137 1479-1487. DOI: https://doi.org/10.1016/j.jhazmat.2006.04.023.

  • 32. Zgrzebnicki M. Krauze N. Gęsikiewicz-Puchalska A. Kapica-Kozar J. Piróg E. Jędrzejewska A. Michalkiewicz B. Narkiewicz U. Morawski A.W. & Wrobel R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: https://doi.org/10.1155/2017/7359591.

  • 33. Tiwari D. Bhunia H. & Bajpai P.K. (2018). Adsorption of CO2 on KOH activated N-enriched carbon derived from urea formaldehyde resin: kinetics isotherm and thermodynamic studies. Appl. Surf. Science 439 760-771. DOI: https://doi.org/10.1016/j.apsusc.2017.12.203.

  • 34. Ludwinowicz J. & Jaroniec M. (2015). Effect of activation agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94 673-679. DOI: https://doi.org/10.1016/j.carbon.2015.07.052.

  • 35. Presser V. McDonough J. Yeon S.H. & Gogotsi Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4 3059-3066. DOI: 10.1039/C1EE01176F.

  • 36. Wrobel R.J. & Becker S. (2010). Carbon and sulphur on Pd(111) and Pt(111): Experimental problems during cleaning of the substrates and impact of sulphur on the redox properties of CeOx in the CeOx/Pt(111) system. Vacuum 84(11) 1258-1265 DOI: https://doi.org/10.1016/j.vacuum.2010.01.056.

  • 37. Figueiredo J.L. Pereira M.F.R. Freitas M.M.A. & Orfao J.J.M. (1999). Modifi cation of the surface chemistry of activated carbons. Carbon 37 1379-1389. DOI: https://doi.org/10.1016/S0008-6223(98)00333-9.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 308 135 11
PDF Downloads 199 108 8