Experiment and prediction of water content of sour natural gas with an modified cubic plus association equation of state

Open access


In this work, new experimental value for water content in sour natural gas were reported. In addition, to predict the water content in sour natural gas, a modified cubic plus association equation of state (CPA-EoS) was also proposed. In this model, a new energy parameter a was proposed to make an accurate description of saturated liquid density. Additionally, a temperature dependent binary interaction parameter kij for six binary systems was also obtained. Lastly, a comparison between the prediction results of the modified CPA-EoS and the experimental data was presented, and the results showed that the modified CPA-EoS could predict the water content in sour natural gas with high accuracy, which has an AAD of 3.6722% with experimental data in literatures and an AAD of 1.946% for experimental data reported in this work.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. And A.H.M. & Richon D. (2008). Semiempirical method for determining water content of methane-rich hydrocarbon gas in equilibrium with gas hydrates. Ind. & Enginee. Chem. Res. 47(2) 451–458. DOI: 10.1021/ie070372h.

  • 2. Lin Z. Li L. Zhu J. Li Q. & Fan J. (2015). Analytical methods to calculate water content in natural gas. Chem.Enginee. Res. & Design 93 148–162. DOI: 10.1016/j.cherd.2014.05.021.

  • 3. GPSA. (1998). Engineering Data Book. eleventh ed. Tulsa: Gas Processors Association.

  • 4. Zirrahi M. Azin R. Hassanzadeh H. & Moshfeghian M. (2010). Prediction of water content of sour and acid gases. Fluid Phase Equilibria 299(2) 171–179. DOI: 10.1016/j.fluid.2010.10.012.

  • 5. Ziabakhsh-Ganji Z. & Kooi H. (2012). An equation of state for thermodynamic equilibrium of gas mixtures and brines to allow simulation of the effects of impurities in subsurface co 2 storage. International J. Greenhouse Gas Control 11(11) 21–34. DOI: 10.1016/j.ijggc.2012.07.025.

  • 6. Kontogeorgis G.M. Voutsas E.C. And I.V.Y. & Tassios D.P. (1996). An equation of state for associating fluids. Ind. & Enginee. Chem. Res. 35(11) 4310–4318. DOI: 10.1021/ie9600203.

  • 7. Austegard A. Solbraa E. Koeijer G.D. & Mølnvik M.J. (2006). Thermodynamic models for calculating mutual solubilities in h2o–co2 –ch4 mixtures. Chem. Enginee. Res. & Design 84(9) 781–794. DOI: 10.1205/cherd05023.

  • 8. Oliveira M.B. Coutinho J.A.P. & Queimada A.J. (2007). Mutual solubilities of hydrocarbons and water with the cpa eos. Fluid Phase Equilibria 258(1) 58–66. DOI: 10.1016/j.fluid.2007.05.023.

  • 9. Adisasmito S. Iii R.J.F. & Jr E.D.S. (1991). Hydrates of carbon dioxide and methane mixtures. J. Chem. & Enginee. Data 36(1) 68–71. DOI: 10.1021/je00001a020.

  • 10. Dharmawardhana P.B. Parrish W.R. & Sloan E.D. (1980). Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Le Mans 19(4) 410–414. DOI: 10.1021/i160076a015.

  • 11. Mekala P. & Sangwai J.S. (2014). Prediction of phase equilibrium of clathrate hydrates of multicomponent natural gases containing co 2 and h 2 s. J. Petrol. Sci. & Enginee. 116(2) 81–89. DOI: 10.1016/j.petrol.2014.02.018.

  • 12. Li Z. & Firoozabadi A. (2009). Cubic-plus-association equation of state for water-containing mixtures: is “cross association” necessary?. Aiche Journal 55(7) 1803–1813. DOI: 10.1002/aic.11784.

  • 13. Herslund P. J. Thomsen K. Abildskov J. & Solms N.V. (2012). Phase equilibrium modeling of gas hydrate systems for co 2 capture. J. Chem. Thermodyn. 48(5) 13–27. DOI: 10.1016/j.jct.2011.12.039.

  • 14. Li L. Zhu L. & Fan J. (2016). The application of cpa-vdwp to the phase equilibrium modeling of methane-rich sour natural gas hydrates. Fluid Phase Equilibria 409 291–300. DOI: 10.1016/j.fluid.2015.10.017.

  • 15. DIPPR (2011). Design Institute for Physical Properties Diadem 801.

  • 16. Ruffine L. P. Mougin A. & Barreau A. (2006). How to represent hydrogen sulfide within the cpa equation of state. Ind. Eng. Chem. Res. 45(22) 7688–7699. DOI: 10.1021/ie0603417.

  • 17. Ruffine L. & Trusler J.P.M. (2010). Phase behaviour of mixed-gas hydrate systems containing carbon dioxide. J. Chem. Thermodyn. 42(5) 605–611. DOI: 10.1016/j.jct.2009.11.019.

  • 18. Song K.Y. & Kobayashi R. (1987). Water content of CO2 in equilibrium with liquid water and/or hydrates. Spe Formation Evaluation 2(4) 500–508. DOI: 10.2118/15905-PA.

  • 19. Seo M.D. Kang J.W. & Lee C.S. (2011). Water solubility measurements of the co2-rich liquid phase in equilibrium with gas hydrates using an indirect method. J. Chem. & Enginee. Data 56(5) 2626–2629. DOI: 10.1021/je2001232.

  • 20. Chapoy A. Mohammadi A.H. Chareton A. Tohidi B. & Richon D. (2004). Measurement and modeling of gas solubility and literature review of the properties for the carbon dioxide−water system. Ind. & Enginee. Chem. Res. 43(7) págs. 1794–1802. DOI: 10.1021/ie034232t.

  • 21. Shigeru Bando Fumio Takemura Masahiro Nishio Eiji Hihara A. & Akai M. (2003). Solubility of co2 in aqueous solutions of nacl at (30 to 60)°C and (10 to 20) mpa. J. Chem. & Enginee. Data 48(3). DOI: 10.1021/je0255832.

  • 22.Winkler L.W..(1906). Regularity in the absorption of gases by liquids Physical Chemical.

  • 23. Wright R.H. & Maass O. (1932). The electrical conductivity of aqueous solutions of hydrogen sulphide. Canadian J. Res. 6(6) 588-595. DOI: 10.1139/cjr32-047.

  • 24.Wright R.H. & Maass O. (1932). The solubility of hydrogen sulphide in water from the vapor pressures. Canadian J. Res. 6(1) 94-101. DOI: 10.1139/cjr32-006.

  • 25. Selleck F.T. Carmichael L.T. & Sage B.H. (1952). Phase behavior in the hydrogen sulfide-water system. Industrial & Engineering Chemistry 44(9) 2219–2226. DOI: 10.1021/ie50513a064.

  • 26. Reamer H.H. Sage B.H. & Lacey W.N. (1951). Phase equilibria in hydrocarbon systems – volumetric and phase behavior of the methane-hydrogen sulfide system. Ind. & Enginee. Chem. 43(4). DOI: 10.1021/ie50496a052.

  • 27. Coquelet C. Valtz A. Stringari P. Popovic M. Richon D. Mougin P. (2014). Phase equilibrium data for the hydrogen sulphide + methane system at temperatures from 186 to 313 K and pressures up to about 14 MPa 383:94-9. DOI: 10.1016/j.fluid.2014.09.025.

  • 28. Wei M.S.W. Brown T.S. Kidnay A.J. & Sloan E.D. (1995). Vapor + liquid equilibria for the ternary system methane + ethane + carbon dioxide at 230 k and its constituent binaries at temperatures from 207 to 270 k. J. Chem. & Enginee. Data 40(4) 726–731. DOI: 10.1021/je00020a002.

  • 29. Webster L.A. & Kidnay A.J. (2001). Vapor−liquid equilibria for the methane−propane−carbon dioxide systems at 230 k and 270 k. J. Chem. Eng. Data 46(3) 759–764. DOI: 10.1021/je000307d.

  • 30. Donnelly H.G. & Katz D.L. (1954). Phase equilibria in the carbon dioxide–methane system. Ind. & Enginee. Chem. 46(3) 511–517. DOI: 10.1021/ie50531a036.

  • 31. Bierlein J.A. & Kay W.B. (1953). Phase-equilibrium properties of system carbon dioxide-hydrogen sulfide. Ind. & Enginee. Chem. 45(3) 618–624. DOI: 10.1021/ie50519a043.

  • 32. Chapoy A. Coquelet C. Liu H. Valtz A. & Tohidi B. (2013). Vapour–liquid equilibrium data for the hydrogen sulphide (h 2 s) + carbon dioxide (co 2) system at temperatures from 258 to 313 k. Fluid Phase Equilibria 356(1–2) 223-228. DOI: 10.1016/j.fluid.2013.07.050.

  • 33. Sobocinski D.P. & Kurata F. (1959). Heterogeneous phase equilibria of the hydrogen sulfide–carbon dioxide system. Aiche J. 5(4) 545–551. DOI: 10.1002/aic.690040217.

  • 34. Aoyagi K. Song K.Y. Kobayashi R. Sloan E.D. Dharmawardhana P.B. (1980) (I). The Water Content and Correlation of the Water Content of Methane in Equilibrium with Hydrates and (II). The Water Content of a High Carbon Dioxide Simulated Prudhoe Bay Gas in Equilibrium with Hydrates. Tulsa: GPA.

  • 35. Antonin Chapoy A.H.M. Bahman Tohidi A. & Richon D. (2004). A semiempirical approach for estimating the water content of natural gases. Ind. & Enginee. Chem. Res. 43(22) 7137–7147. DOI: 10.1021/ie049867m.

  • 36. Michelsen M.L. JMM (2007). Thermodynamic Models: Fundamentals & Computational Aspects. second ed. ed. Denmark: Tie-Line Publications.

  • 37. Ng et al. H.J. Ng CJC H. Schroeder (2001). Water Content of Natural Gas Systems Containing Acid Gas. Tulsa: GPA Research Report.

  • 38. Lukacs J. & Robinson D.B. (1963). Water content of sour hydrocarbon systems. Society of Petroleum Engineers Journal 3(4) 293–297. DOI: 10.2118/614-PA.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 443 349 8
PDF Downloads 263 193 5