Synthesis, characterization of Hollandite Ag2Mn8O16 on TiO2 nanotubes and their photocatalytic properties for Rhodamine B degradation

Open access

Abstract

In this research Ag2Mn8O16 nanocrystals/TiO2 nanotubes, photoelectrodes were successfully prepared through anodization and annihilation steps, followed by electrodeposition of MnO2 and Ag in a three electrodes cell. The obtained photoelectrodes were dried, then annealed for crystallization, the morphology and structure of the fabricated electrodes were characterized via scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The light absorption and harvesting properties were investigated through UV–visible diffuse reflectance spectrum (DRS), photocatalytic performances were evaluated by degradation of 50 mL of Rhodamine B (5 mg L−1) under Xenon light irradiation for 2 h. Results illustrated that the fabricated photoelectrodes show remarkable photo-degradation properties of organic pollutants in aqueous mediums.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chen Q. Liu H. Xin Y. Cheng X. Zhang J. Li J. Wang P. & Li H. (2013). Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta. 99 152–160. DOI: 10.1016/j.electacta.2013.03.032.

  • 2. Cheng X. Liu H. Chen Q. Li J. & Wang P. (2013). Construction of N S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta. 103 134–142. DOI: 10.1016/j.electacta.2013.04.072.

  • 3. Yao Y. Li K. Chen S. Jia J. Wang Y. & Wang H. (2012). Decolorization of hodamine B in a thin-film photo-electrocatalytic (PEC) reactor with slant-placed TiO2 nano-tubes electrode. J. Chem. Eng. 187 29–35. DOI: 10.1016/j.cej.2012.01.056.

  • 4. Sun S. Chen C. Sun J. Peng Q. Lü K. & Deng K. (2013). Enhancement of catalytic degradation of Rhodamine B under sunlight with Au loading TiO2 nanotube arrays. J. Procedia Environ. Sci. 18 620–624. DOI: 10.1016/j.proenv.2013.04.085.

  • 5. Cheng X. Liu H. Chen Q. Li J. & Wang P. (2013). Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of Diclofenac. J. Hazard. Mater. 254 141–148. DOI: 10.1016/j.jhazmat.2013.03.062.

  • 6. Yu X. Zhang Y. & Cheng X. (2014). Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite. Electrochim. Acta. 137 668–675. DOI: 10.1016/j.electacta.2014.06.027.

  • 7. Zhong H. Shaogui Y. Yongming J. & Cheng S. (2009). Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: Mechanism implication. J. Environ. Sci. 21(2) 268–272. DOI: 10.1016/S1001-0742(08)62262-7.

  • 8. Fan M. Hu S. Ren B. Wang J. & Jing X. (2013). Synthesis of nanocomposite TiO2/ZrO2 prepared by different templates and photocatalytic properties for the photodegradation of Rhodamine B. J. Powder Technol. 235 27–32. DOI: 10.1016/j.powtec.2012.09.042.

  • 9. Cheng X. Pan G. & Yu X. (2015). Visible light responsive photoassisted electrocatalytic system based on CdS NCs decorated TiO2 nano-tube photoanode and activated carbon containing cathode for wastewater treatment. Electrochim. Acta. 156 94–101. DOI:10.1016/j.electacta.2015.01.042

  • 10. Chen Q. Liu H. Xin Y. & Cheng X. (2013). TiO2 nanobelts–effect of calcination temperature on optical photoelectrochemical and photocatalytic properties. Electrochim. Acta. 111 284–291. DOI: 10.1016/j.electacta.2013.08.049.

  • 11. Cheng X. Yu X. & Xing Z. (2013). Synthesis and characterization of C–N–S tridoped TiO2 nano-crystalline photocatalyst and its photocatalytic activity for degradation of Rhodamine B. J. Phys. Chem. Solids 74(5) 684–690. DOI: 10.1016/j.jpcs.2013.01.004.

  • 12. Zhang J. Liu H. Wang B. Thabit M. & Bai H. (2015). Preparation of Pd/Go/Ti electrode and its electrochemical degradation for 2 4-dichlorophenol. Materials & Design. 86 664–669. DOI: 10.1016/j.matdes.2015.07.146.

  • 13. Hu J. Jiang N. Li J. Shang K. Lu N. & Wu Y. (2016). Degradation of benzene by bipolar pulsed series surface/packed-bed discharge reactor over MnO2 –TiO2/zeolite catalyst. Chem. Engine. J. 293 216–224. DOI: 10.1016/j.cej.2016.02.036.

  • 14. Luo S. Zhou W. Xie A. Wu F. Yao C. Li X. Zuo S. & Liu T. (2016). Effect of mno 2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2 –palygorskite. Chem. Engine. J 286 291–299. DOI: 10.1016/j.cej.2015.10.079.

  • 15. Huang Y.G. Zhang X.H. Chen X.B. Wang H.Q. Chen J.R. Zhong X.X. & Li Q.Y. (2015). Electrochemical properties of MnO2 -deposited TiO2 nanotube arrays 3d composite electrode for supercapacitors. Int. J. Hydrogen Energy. 40(41) 14331–14337. DOI: 10.1016/j.ijhydene.2015.05.014.

  • 16. Guo X.L. Kuang M. Li F. Liu X.Y. Zhang Y.X. Dong F. & Losic D. (2016). Engineering of three dimensional (3-d) diatom@TiO2 @MnO2 composites with enhanced super-capacitor performance. Electrochim. Acta. 190 159–167. DOI: 10.1016/j.electacta.2015.12.178.

  • 17. Ramesh M. Nagaraja H.S. Rao M.P. Anandan S. & Huang N.M. (2016). Fabrication characterization and catalytic activity of α-MnO2 nanowires for dye degradation of reactive black 5. Mater. Lett. 172 85–89. DOI: 10.1016/j.matlet.2016.02.076.

  • 18. Zhou H. Zou X. & Zhang Y. (2016). Fabrication of TiO2 @MnO2 nanotube arrays by pulsed electrodeposition and their application for high-performance supercapacitors. Electro-chim. Acta. 192 259–267. DOI: 10.1016/j.electacta.2016.01.182.

  • 19. Cetinkaya T. Tokur M. Ozcan S. Uysal M. & Akbulut H. (2016). Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries. Int. J. Hydrogen Energy. 41(16) 6945–6953. DOI: 10.1016/j.ijhydene.2015.12.092.

  • 20. Yang Y. Zhou Y. & Wang T. (2014). Preparation of optically active polyurethane/TiO2 /MnO2 multilayered nanorods for low infrared emissivity. Mater. Lett. 133(10) 269–273. DOI: 10.1016/j.matlet.2014.06.184.

  • 21. Ma Z. & Zhao T. (2016). Reduced graphene oxide anchored with MnO2 nanorods as anode for high rate and long cycle lithium ion batteries. Electrochim. Acta. 201 165–171. DOI: 10.1016/j.electacta.2016.03.200.

  • 22. Junlabhut P. Boonruang S. Mekprasart W. & Pecharapa W. (2016). Ag nanoparticle-doped SiO2 /TiO2 hybrid optical sensitive thin film for optical element applications. Surface & Coatings Technology. 306 262–266. DOI: 10.1016/j.surfcoat.2016.06.033.

  • 23. Hussain M. Tariq S. Ahmad M. Sun H. Maaz K. Ali G. Hussain S.Z. Iqbal M. Karim S. & Nisar A. (2016). Ag TiO2 nanocomposite for environmental and sensing applications. Materials Chemistry & Physics. 181 194–203. DOI: 10.1016/j.matchemphys.2016.06.049.

  • 24. Kim J.H. Kim D.H. Kim S.K. Bae D. Yoo Y.Z. & Seong T.Y. (2016). Control of refractive index by annealing to achieve high figure of merit for TiO2 /Ag/TiO2 multilayer films. Ceram. Int. 42(12) 14071–14076. DOI: 10.1016/j.cera-mint.2016.06.015.

  • 25. Khosravani S. Dehaghi S.B. Askari M.B. & Khodadadi M. (2016). The effect of various oxidation temperatures on structure of Ag-TiO2 thin film. Microelectron. Eng. 163 67–77. DOI: 10.1016/j.mee.2016.06.008.

  • 26. Zhao Z. Sun J. Xing S. Liu D. Zhang G. Bai L. & Jiang B. (2016). Enhanced raman scattering and photocatalytic activity of TiO2 films with embedded ag nanoparticles deposited by magnetron sputtering. Journal of Alloys & Compounds. 679 88–93. DOI: 10.1016/j.jallcom.2016.03.248.

  • 27. Kuo D.H. Hsu W.T. & Yang Y.Y. (2016). From the fluorescent lamp-induced bactericidal performance of sputtered Ag/TiO2 films to re-explore the photocatalytic mechanism. Applied Catalysis B Environmental. 184(1) 191–200. DOI: 10.1016/j.apcatb.2015.11.032.

  • 28. Wang X. Zhao Z. Ou D. Tu B. Cui D. Wei X. & Cheng M. (2016). Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p -nitrophenol. Appl. Surf. Sci. 385 445–452. DOI: 10.1016/j.apsusc.2016.05.147.

  • 29. Zhong J.S. Wang Q.Y. Zhang M. Chen D.Q. & Ji Z.G. (2016). In situ fabrication of TiO2 nanotube arrays sensitized by Ag nanoparticles for enhanced photoelectrochemical performance. Mater. Lett. 182 163–167. DOI: 10.1016/j.matlet.2016.06.102.

  • 30. Nasrollahzadeh M. Atarod M. Jaleh B. & Gandomirouzbahani M. (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol congo red and methylene blue. Ceram. Int. 42(7) 8587–8596. DOI: 10.1016/j.ceramint.2016.02.088.

  • 31. Rismanchian A. Chen Y.W. & Chuang S.S.C. (2016). In situ infrared study of photoreaction of ethanol on Au and Ag/TiO2. Catal. Today. 264 16–22. DOI: 10.1016/j.cattod.2015.07.038.

  • 32. Jia Y. Ye L. Kang X. You H. Wang S. & Yao J. (2016). Photoelectrocatalytic reduction of perchlorate in aqueous solutions over Ag doped TiO2 nanotube arrays. Journal of Photochemistry & Photobiology A Chemistry. 328 225–232. DOI: 10.1016/j.jphotochem.2016.05.023.

  • 33. Karimipour M. Ebrahimi M. Abafat Z. & Molaei M. (2016). Synthesis of Ag@TiO2 core-shells using a rapid microwave irradiation and study of their nonlinear optical properties. Opt. Mater. 57 257–263. DOI: 10.1016/j.optmat.2016.05.010.

  • 34. Yao Y.C. Dai X.R. Hu X.Y. Huang S.Z. & Jin Z. (2016). Synthesis of Ag-decorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Appl. Surf. Sci. 387 469–476. DOI: 10.1016/j.apsusc.2016.06.130.

  • 35. Spadavecchia F. Cappelletti G. Ardizzone S. Bianchi C.L. Cappelli S. Oliva C. Scardi P. Leoni M. & Fermo P. (2010). Solar photoactivity of nano-n-TiO2 from tertiary amine: Role of defects and paramagnetic species. J. Appl. Catal. 96(3) 314–322. DOI: 10.1016/j.apcatb.2010.02.027.

  • 36. Pawlikowska M. Fuks H. & Tomaszewicz E. (2017). Solid state and combustion synthesis of Mn2+ – doped scheelites – their optical and magnetic properties. Ceram. Int. (43)14135–14145. DOI: 10.1016/j.ceramint.2017.07.154.

  • 37. Urbanowicz P. Piątkowska M. Sawicki B. Groń T. Kukuła Z. & Tomaszewicz E. (2015). Dielectric properties of RE2W2O9 (RE = Pr Sm–Gd) ceramics. J. Eur. Ceram. Soc. 35(15) 4189–4193. DOI: 10.1016/j.jeurceramsoc.2015.07.028.

  • 38. 36. Zhang G.Q. Hendrickson M. Plichta E.J. Au M. & Zheng J.P. (2012). Preparation Characterization and Electrochemical Catalytic Properties of Hollandite Ag2Mn8O16 for Li-Air Batteries. J. Electrochem. Soc. 159(3) A310–A314. DOI: 10.1149/2.085203jes.

  • 39. Zhang G. Zheng J.P. Liang R. Zhang C. Wang B. Au M. Hendrickson M. & Plichta E.J. (2011). Multilayer hollandite Ag2Mn8O16 catalytic air electrodes for rechargeable lithium-air batteries. Electrode & Catalyst Nanostructures. DOI: 10.1149/1.3655436.

  • 40. Khataee A. Arefi-Oskoui S. Fathinia M. Esmaeili A. Hanifehpour Y. Joo S.W. & Hamnabard N. (2015). Synthesis characterization and photocatalytic properties of er-doped PbSe nanoparticles as a visible light-activated photo-catalyst. J. Mol. Catal. A: Chem. 398 255–267. DOI: 10.1016/j.molcata.2014.11.009.

  • 41. Hoffmann M.R. Martin S.T. Choi W. & Bahnemann D.W. (1995). Environmental applications of semiconductor photocatalysis. J. Chem. Rev. 95(1) 69–96. DOI: 10.1021/cr00033a004.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 637 189 8
PDF Downloads 296 114 9