Effects of processing parameters on the properties of amphiphilic block copolymer micelles prepared by supercritical carbon dioxide evaporation method

Open access


The operation parameters for the supercritical carbon dioxide (ScCO2) evaporation method greatly affect the properties of the prepared drug-loaded micelles. In this study, the effects of those key parameters on the drug-loading content (LC) and drug entrapment efficiency (EE) are discussed. It is observed that EE and LC of the micelles are slightly increased with the enhancing temperature and the copolymer molecular ratio of hydrophilic/hydrophobic segment, while decreased with the enhancing ScCO2 evaporation rate. The pressure and volume ratio of ScCO2 to H2O are observed the optimum condition. In addition, the verification experiment is carried out under the obtained optimizing parameters. The prepared micelles exhibit relatively regular spherical shape and narrow size distribution with the EE and LC value of 70.7% and 14.1%, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Yang X.Y. Zhang X.Y. Liu Z.F. Ma Y.F. Huang Y. & Chen Y. (2008). High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 112 17554–17558. DOI: 10.1021/jp806751k.

  • 2. Chen M.X. Li B.K. Yin D.K. Liang J. Li S.S. & Peng D.Y. (2014). Layer-by-layer Assembly of Chitosan Stabilized Multilayered Liposomes for Paclitaxel Delivery. Carbohydr. Polym. 111 298–304. DOI: 10.1016/j.carbpol.2014.04.038.

  • 3. Sugahara K.N. Teesalu T. Karmali P.P. Kotamraju V.R. Agemy L. Greenwald D.R. & Ruoslahti E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 328 1031–1035. DOI: 10.1126/science.1183057.

  • 4. Ferrari M. (2005). Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 5 161–171. DOI: 10.1038/nrc1566.

  • 5. Jin J. Lee W.S. Joo K.M. Maiti K.K. Biswas G. Kim W. Kim K.T. Lee S.J. Kim K.H. Nam D.H. & Chung S.K. (2011). Preparation of Blood-brain Barrier-permeable Paclitaxel-carrier Conjugate and Its Chemotherapeutic Activity in The Mouse Glioblastoma Model. Med. Chem. Comm. 2 270–273. DOI: 10.1039/c0md00235f.

  • 6. Brannon-Peppas L. & Blanchette J.O. (2004). Nanoparticle and Targeted Systems for Cancer Therapy. Adv. Drug. Deliv. Rev. 64 206–212. DOI: 10.1016/j.addr.2012.09.033.

  • 7. Torchilin V.P. (2007). Micellar nanocarriers: Pharmaceutical Perspectives. Pharm. Res. 24 1–16. DOI: 10.1007/s11095-006-9132-0.

  • 8. Kataoka K. Harada A. & Nagasaki Y. (2001). Block Copolymer Micelles for Drug Delivery: Design Characterization and Biological Significance. Adv. Drug Deliv. Rev. 47 113–131. DOI: 10.1016/S0169-409X(00)00124-1.

  • 9. Yang Y. Pan D. Luo K. Li L. & Gu Z. (2013). Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34 8430–8443. DOI: 10.1016/j.biomaterials.2013.07.037.

  • 10. Li N. Li N. Yi Q. Luo K. Guo C. Pan D. & Gu Z. (2014). Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent Biomaterials 35 9529–9545. DOI: 10.1016/j.biomaterials.2014.07.059.

  • 11. Li N. Guo C. Duan Z. Yu L. Luo K. Lu J. & Gu Z. (2016). A stimuli-responsive Janus peptide dendron-drug conjugate as a safe and nanoscale drug delivery vehicle for breast cancer therapy. J. Mater. Chem. B 4 3760–3769. DOI: 10.1039/c6tb00688d.

  • 12. Li N. Cai H. Jiang L. Hu J. Bains A. Hu J. Gong Q. Luo K. & Gu Z. (2017). Enzyme-Sensitive and Amphiphilic PEGylated Dendrimer-Paclitaxel Prodrug-Based Nanoparticles for Enhanced Stability and Anticancer Efficacy ACS Appl. Mater. Inter. 9 6865–6877. DOI: 10.1021/acsami.6b15505.

  • 13. Duan Z.Y. Zhang Y.H. Zhu H.Y. Sun L. Cai H. Li B.J. Gong Q.Y. Gu Z. W. & Luo K. (2017). Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy ACS Appl. Mater. Inter. 9 3474–3486. DOI: 10.1021/acsami.6b15232.

  • 14. Torchilin V.P. (2001). Structure and Design of Polymeric Surfactant-based Drug Delivery Systems J. Control. Release 73 137–172. DOI: 10.1016/S0168-3659(01)00299-1.

  • 15. Riess G. (2003). Micellization of Block Copolymers. Prog. Polym. Sci. 28 1107–1170. DOI: 10.1016/S0079-6700(03)00015-7.

  • 16. Tucker B.S. & Sumerlin B.S. (2014). Poly(N-(2-hydroxypropyl) methacrylamide)-based Nanotherapeutics. Polym. Chem. 5 1566–1572. DOI: 10.1039/C3PY01279D.

  • 17. Gaucher G. Marchessault R.H. & Leroux J.C. (2010). Polyester-based Micelles and Nanoparticles for the Parenteral Delivery of Taxanes. J. Control. Release 143 2–12. DOI: 10.1016/j.jconrel.2009.11.012.

  • 18. Odonnell P.B. & McGinity J.W. (1997). Preparation of Microspheres by the Solvent Evaporation Technique. Adv. Drug. Deliv. Rev. 28 25–42. DOI: 10.1016/S0169-409X(97)00049-5.

  • 19. Blackburn J.M. Long D.P. Cabanas A. & Watkins J.J. (2001). Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide. Science 294 141–145. DOI: 10.1126/science.1064148.

  • 20. Darr J.A. & Poliakoff M. (1999). New Directions in Inorganic and Metal-organic Coordination Chemistry in Supercritical Fluids. Chem. Rev. 99 495–541. DOI: 10.1021/cr970036i.

  • 21. Pham Q.L. Nguyen V.H. Haldorai Y. & Shim J.J. (2013). Polymerization of Vinyl Pivalate in Supercritical Carbon Dioxide and the Saponification for the Preparation of Syndiotacticity-rich Poly(vinyl alcohol). Korean J. Chem. Eng. 30 1153–1161. DOI: 10.1007/s11814-013-0019-6.

  • 22. Kendall J.L. Canelas D.A. Young. J.L. & DeSimone J.M. (1999). Polymerizations in Supercritical Carbon Dioxide. Chem. Rev. 99 543–563. DOI: 10.1021/cr9700336.

  • 23. Meng Y. Su F.H. & Chen Y.Z. (2015). A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear. ACS Appl. Mater. Interf. 7 11604–11612. DOI: 10.1021/acsami.5b02650.

  • 24. Islam M.N. Haldorai Y. Nguyen V.H. & Shim J.J. (2014). Synthesis of Poly(vinyl pivalate) by Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide. Eur. Polym. J. 61 93–104. DOI: 10.1016/j.eurpolymj.2014.09.003.

  • 25. Baldino L. Sarno M. Cardea S. Irusta S. Ciambelli P. Santamaria J. & Reverchon E. (2015). Formation of Cellulose Acetate-Graphene Oxide Nanocomposites by Supercritical CO2 Assisted Phase Inversion. Ind. Eng. Chem. Res. 54 8147–8156. DOI: 10.1021/acs.iecr.5b01452.

  • 26. Nguyen V.H. Haldorai Y. Pham Q.L. & Shim J.J. (2011). Supercritical Fluid Mediated Synthesis of Poly(2-hydroxyethyl methacrylate)/Fe3O4 Hybrid Nanocomposite. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 176 773-778. DOI: 10.1016/j.mseb.2011.02.020.

  • 27. Jiao Z. Liu N. & Chen Z.M. (2012). Selection Suitable Solvents to Prepare Paclitaxel-loaded Micelles by Solvent Evaporation Method. Pharm. Dev. Technol. 17 164–169. DOI: 10.3109/10837450.2010.529146.

  • 28. Patel V.K. Vishwakarma N.K. Mishra A.K. Biswas C.S. & Ray B. (2012). (S)-2-(ethyl propionate)-(O-ethyl xanthate)- and (S)-2-(Ethyl isobutyrate)-(O-ethyl xanthate)-mediated RAFT Polymerization of Vinyl Acetate. J. Appl. Polym. Sci. 125 2946–2955. DOI: 10.1002/app.36233.

  • 29. Chu H.Y. Liu N. Wang X. Jiao Z. & Chen Z.M. (2009). Morphology and in vitro Release Kinetics of Drug- -loaded Micelles Based on Well-defined PMPC-b-PBMA Copolymer. Int. J. Pharm. 371 190–196. DOI: 10.1016/j.ijpharm.2008.12.033.

  • 30. Allen C. Maysinger D. & Eisenberg A. (1999). Nano-engineering Block Copolymer Aggregates for Drug Delivery. Coll. Surf. B-Biointerfaces 16 3–27. DOI: 10.1016/S0927-7765(99)00058-2.

  • 31. Rapoport N. (2007). Physical Stimuli-responsive Polymeric Micelles for Anti-cancer Drug Delivery. Prog. Polym. Sci. 32 962–990. DOI: 10.1016/j.progpolymsci.2007.05.009.

  • 32. Herrmann J. & Bodmeier R. (1995). Somatostatin Containing Biodegradable Microspheres Prepared by a Modified Solvent Evaporation Method Based on W/O/W-multiple Emulsions. Int. J. Pharm. 126 129–138. DOI: 10.1016/0378-5173(95)04106-0.

Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 405 126 5
PDF Downloads 176 74 3