Mathematical modeling of large floating roof reservoir temperature arena

Open access


The current study is a simplification of related components of large floating roof tank and modeling for three dimensional temperature field of large floating roof tank. The heat transfer involves its transfer between the hot fluid in the oil tank, between the hot fluid and the tank wall and between the tank wall and the external environment. The mathematical model of heat transfer and flow of oil in the tank simulates the temperature field of oil in tank. Oil temperature field of large floating roof tank is obtained by numerical simulation, map the curve of central temperature dynamics with time and analyze axial and radial temperature of storage tank. It determines the distribution of low temperature storage tank location based on the thickness of the reservoir temperature. Finally, it compared the calculated results and the field test data; eventually validated the calculated results based on the experimental results.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wei S. & Qinglin C. et al. (2016). Research on the variation law of heating temperature field and the effective energy utilization rate of a steam coil for the floating roof tank. Numerical Heat Trans. 70 1345–1355.

  • 2. Nurten V. (2003). Numerical analysis of the transient turbulent flow in a fuel oil storage tank. Int. J. Therm. Sci. 46 3429–3440. DOI: 10.1016/S0017-9310(03)00145-5.

  • 3. Wang M. Zhang X. & Yu G. et al. (2017). Numerical study on the temperature drop characteristics of waxy crude oil in a double-plate floating roof oil tank. Appl. Therm. Enginee. 124 560–570.

  • 4. Oliveski R.D.C. Macagnan M.H. Copetti J.B. & Petroll A.D.L. (2005). Natural convection in a tank of oil: experimental validation of a numerical code with prescribed boundary condition. Exp. Therm. Fluid Sci. 29 671–680. DOI: 10.1016/j.expthermflusci.2004.10.003.

  • 5. Oliveski R.D.C. Krenzinger A. & Vielmo H.A. (2001). Experimental and numerical analysis of a thermal storage tank. Exp. Therm. Fluid Sci. 3 2193–2198. DOI: 10.1002/er.1057.

  • 6. Oliveski R.D.C. Krenzinger A. & Vielmo H.A. (2003). Cooling of cylindrical vertical tanks submitted to natural internal convection. Int. J. Therm. Sci. 46 2015–2026. DOI: 10.1016/S0017-9310(02)00508-2.

  • 7. Rejane De Cesaro Oliveski. (2013). Correlation for the cooling process of vertical storage tanks under natural convection for high Prandtl number. Int. J. Heat Mass Trans. 57 292–298.

  • 8. Lin W.X. & Armfield S.W. (1999). Direct simulation of natural convection cooling in a vertical circular cylinder. Int. J. Therm. Sci. 42 4117–4130. DOI: 10.1016/S0017-9310(99)00074-5.

  • 9. Atmane M.A. Chan V.S.S. & Murray D.B. (2003). Natural convection around a horizontal heated cylinder: the effects of vertical confinement. Int. J. Heat Mass Trans. 46 3661–3672. DOI: 10.1016/S0017-9310(03)00154-6.

  • 10. Sanapala V.S. Velusamy K. & Patnaik B.S.V. (2016). CFD simulations on the dynamics of liquid sloshing and its control in a storage tank for spent fuel applications. Ann. Nuc. Energy 94 494–509.

  • 11. Oliveira P.J.R. & Issa R.I. (2001). An improved PISO algorithem for the computation of buoyant driven flows. Num. Heat Trans. B-Fund. 40 473–493.

  • 12. González I. Pérez-Segarra C.D. Lehmkuhl O. Torras S. & Oliva A. (2016). Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks. Appl. Energy 179 1106–1122.

  • 13. Rodriguez I. Castro J. Perez-Segarra C.D. & Oliva A. (2009). Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. Int. J. Therm. Sci. 48 708–721. DOI: 10.1016/j.ijthermalsci.2008.06.002.

  • 14. Fernandez-Seara J. Francisco U. Dopazo J. & Alberto J. (2011). Experimental transient natural convection heat transfer from a vertical cylindrical tank. Appl. Therm. Eng. 31 1915–1922. DOI: 10.1016/j.applthermaleng.2011.02.037.

  • 15. Stig G. & Jensen A. (2012). Natural convection heat transfer from two horizontal cylinders at high Rayleigh numbers. Int. J. Heat Mass Trans. 55 5552–5564. DOI: 10.1016/j.ijheatmasstransfer.2012.05.033.

  • 16. Stig G. Atle J.B. & Anders P.R. (2011). PIV investigation of buoyant plume from natural convection heat transfer above a horizontal heated cylinder. Int. J. Heat Mass Trans. 54 4975–4987. DOI: 10.1016/j.ijheatmasstransfer.2011.07.011.

  • 17. Reymond O. Murray D.B. & O’Donovan T.S. (2008). Natural convection heat transfer from two horizontal cylinders. Exp. Therm. Fluid Sci. 32 1702–1709. DOI: 10.1007/978-3-319-08132-8_2.

  • 18. Persoons T. O’Gorman I.M. Donoghue D.B. Byrne G. & Murray D.B. (2011). Natural convection heat transfer and fluid dynamics for a pair of vertically alifned isothermal horizontal cylinders. Int. J. Therm. Sci. 54 5163–5172. DOI: 10.1016/j.ijheatmasstransfer.2011.08.033.

  • 19. Mawire A. (2013). Experimental and simulated thermal stratification evaluation of an oil storage tank subjected to heat losses during charging. Appl. Energy 108 459–465.

  • 20. Yu D. (2005). Development on temperature monitoring system of large floating roof tank. Oil Gas Stor. Transport 24 41–43.

  • 21. Yu D. & Fang X.Y. (2003). Temperature drop characteristics of oil in the large breathing roof tank. Oil Gas Stor. Transport 22 47–49.

  • 22. Li W. Wang Q. Li R. Li C. Yu B. Zhang J. & Dai P. (2011). Numerical study on temperature field of a large floating roof oil tank. J. Chem. Indus. Eng. 62 108–112.

  • 23. Chouikh R. Guizani A. Cafsi A. El Maalej M. & Belghith A. (2000). Experimental study of the natural convection flow around an array of heated horizontal cylinders. Renew. Energ. 21 65–78. DOI: 10.1016/S0960-1481(99)00120-2.

  • 24. Bin Zhao (2012). Numerical simulation for the temperature changing rule of the crude oil in a storage tank based on the wavelet finite element method. J. Therm. Anal. Calorim. 107 3 87–393.

  • 25. Tao W. (2001). Numerical heat transfer. Xi ‘an: Xi ‘an Jiaotong University Press.

  • 26. Jian Z. Dong H. Wei L.X. & Liu Y. (2015). Heat Loss Test and Estimate for the Large-scale Floating Roof Tank. Open Petrol. Eng. J. 8 117–125. DOI: 10.2174/1874834101508010117.

  • 27. Suhas P. (1980). Numerical Heat Transfer and Fluid Flow. Boca Raton: CRC Press.

  • 28. Versteeg H.K. & Malalasekera W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. (2nd ed). New York: Pearson.

  • 29. Jian Z. Liu Y. Wei L.X. & Dong H. (2014). Transient Cooling of Waxy Crude Oil in a Floating Roof Tank. J. Appl. Mat. 2014 1–12. DOI: 10.1155/2014/482026.

  • 30. Cheng Q.L. Sun W. Shao S. Li Z. & Yi X. (2014). The study of variation law and influence factors of heat transfer coefficient for floating roof storage tank. Energ. Conserv. Technol. 32 151–154.

  • 31. Fan J.W. & Liu-et Y. al. (2017). Hydrodynamics of residual oil droplet displaced by polymer solution in microchannels of lipophilic rocks. Int. J. Heat Technol. 35 611–618.

  • 32. Rahimi M. & Parvareh A. (2007). CFD study on mixing by coupled jet-impeller mixers in a large crude oil storage tank. Compu. & Chem. Enginee. 31 737–744.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 430 237 2
PDF Downloads 174 104 1