Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst

Open access

Abstract

The paper presents the oxidation of natural limonene (extracted from waste orange peels) by 60 wt% hydrogen peroxide, in the presence of Ti-MCM-41 catalyst and in methanol as the solvent. The aim of the research was to develop the most favorable technological parameters for the process of limonene oxidation (temperature, molar ratio of limonene to hydrogen peroxide, methanol concentration, Ti-MCM-41 catalyst content and reaction time) by analyzing changes in the main functions describing this process: the conversion of limonene, selectivities of appropriate products, the conversion of hydrogen peroxide and the effective conversion of hydrogen peroxide. The process is environmentally friendly process and it uses renewable raw material - limonene and a safe oxidant -hydrogen peroxide. During the study, very valuable oxygenated derivatives of limonene were obtained: 1,2-epoxylimonene, its diol, carvone, carveol, and perillyl alcohol. These compounds are used in medicine, cosmetics, perfumery, food and polymers industries.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ciriminna R. Lomeli-Rodrigues M. Demma Cara P. Lopez-Sanchez J.A. & Pagliaro M. (2014). Limonene: a versatile chemical of the bioeconomy Chem. Comm. 50 15273–15466. DOI: 10.1039/C4CC06147K.

  • 2. Monteiro J.L.F. & Veloso C.O. (2004). Catalytic conversion of terpenes into fine chemicals. Top. Catal. 27 169–180. DOI: 10.1023/B:TOCA.0000013551.99872.8d.

  • 3. Firdaus M. & Meier M.A.R. (2013). Renewable polyamides and polyurethanes derived from limonene. Green Chem. 15 269–536. DOI: 10.1039/C2GC36557J.

  • 4. Santa A.M.A. Vergara J.C.G. Palacio L.A.S. & Echavarria A.I. (2008). Limonene epoxidation by molecular sieves zincophosphates and zincochromates. Catal. Today 133 80–86. DOI: 10.1016/j.cattod.2007.12.025.

  • 5. Caovilla M. Caovilla A. Pergher S.B.C Esmelindro M.C. Fernandes Ch. Dariva C. Bernardo-Gusmao K. Oestreicher E.G. & Antunes O.A.C. (2008). Catalytic oxidation of limonene a-pinene and b-pinene by the complex [FeIII(BPMP) Cl(m-O)FeIIICl3] biomimetic to MMO enzyme. Catal. Today 133 695–698. DOI: 10.1016/j.cattod.2007.12.107.

  • 6. Corma A. Iborra S. & Velty A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107 2411–2502. DOI: 10.1021/cr050989d.

  • 7. Wróblewska A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules 19 19907–19922. DOI: 10.3390/molecules191219907.

  • 8. Wilborn P.A. Chu F. & Tang Ch. (2013). Progress in renewable polymers from natural terpenes terpenoids and rosin. Macromol. Rapid Comm. 34 8–37. DOI: 10.1002/marc.201200513.

  • 9. Kallrath G. & Biegler H. (1968). U.S. Patent No. 3383172. Washington D.C.: U.S. Patent and Trademark Office.

  • 10. Ballmoos R. Chu C. Landis M. & Derouane E. (1989). U.S. Patent No. 4880611 A. Washington D.C.: U.S. Patent and Trademark Office.

  • 11. Garcia-Martinez J. & Li K. (2015). Mesoporous zeolites: preparation characterization and applications Wiley-VCH Verlag GmbH & Co. Weinheim Germany 19–26.

  • 12. Iuliean V. Bilba A.N. Birsa L.M. & Luchian C. (2008). Sorption properties of MCM-41 mesoporous materials. Acta Chem. Iasi 16 47–60.

  • 13. Rogerio A.A. Melo Marcus V. Giotto João Rochab Ernesto & A. Urquieta-González (1999). MCM-41 ordered mesoporous molecular sieves synthesis and characterization. Mat. Res. 2 173–179. DOI: 10.1590/S1516-14391999000300010.

  • 14. Grun M. Unger K.K. Matsumoto A. Tsutsumi K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mat. 27 207–216. DOI: 10.1016/S1387-1811(98)00255-8.

  • 15. Wróblewska A. & Makuch E. (2013). Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation. Pol. J. Chem. Technol. 15 111–115. DOI: 10.2478/pjct-2013-0078.

  • 16. Brill W.F. (1963). The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen. J. Am. Chem. Soc. 85 141–143.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 792 390 17
PDF Downloads 457 252 6