Effect of textural and chemical characteristics of activated carbons on phenol adsorption in aqueous solutions

Open access


The effect of textural and chemical properties such as: surface area, pore volume and chemical groups content of the granular activated carbon and monoliths on phenol adsorption in aqueous solutions was studied. Granular activated carbon and monolith samples were produced by chemical activation. They were characterized by using N2 adsorption at 77 K, CO2 adsorption at 273 K, Boehm Titrations and immersion calorimetry in phenol solutions. Microporous materials with different pore size distribution, surface area between 516 and 1685 m2 g−1 and pore volumes between 0.24 and 0.58 cm3 g−1 were obtained. Phenol adsorption capacity of the activated carbon materials increased with increasing BET surface area and pore volume, and is favored by their surface functional groups that act as electron donors. Phenol adsorption capacities are in ranged between 73.5 and 389.4 mg · g−1.

1. Basak, B., Bhunia, B. & Dey, A. (2014). Studies on the potential use of sugarcane bagasse as carrier matrix for immobilization of Candida tropicalis PHB5 for phenol bio-degradation. Int. Biodeterior. Biodegrad. 93, 107–117. DOI: 10.1016/j.ibiod.2014.05.012.

2. Gupta, A. & Balomajumder, C. (2015). Simultaneous removal of Cr(VI) and phenol from binary solution using Bacillus sp. immobilized onto tea waste biomass. J. Water. Proc. Eng. 6, 1–10. DOI: 10.1016/j.jwpe.2015.02.004.

3. Isaac, W., Mwangi, J., Ngila, C., Ndung’u, P. & Msagati, T.A.M. (2014). Removal of phenolics from aqueous media using quaternised maize Tassels. J. Environ. Manag. 134, 70–79. DOI: 10.1016/j.jenvman.2013.12.031

4. Osegueda, O., Dafinov, A., Llorca, J., Medina, F. & Sueiras, J. (2015). Heterogeneous catalytic oxidation of phenol by in situ generated hydrogen peroxide applying novel catalytic membrane reactors. Chem. Eng. J. 262, 344–355. DOI: 10.1016/j.cej.2014.09.064

5. Zagklis. D.P., Vavouraki, A.I., Kornaros, M.E. & Paraskeva, C.A. (2015). Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. J. Hazard Mater. 285, 69–76. DOI: 10.1016/j.jhazmat.2014.11.038.

6. Turkia, A., Guillardb, C., Dappozzeb, F., Ksibia, F., Berhaultb, G. & Kochkara, H. (2015). Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Appl. Catal. B. 163, 404–414. DOI: 10.1016/j.apcatb.2014.08.010.

7. Yu, L., Chen, J., Liang, Z., Xu, W., Chen, L. & Ye, D. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst Sep. Purif. Technol. 171, 80–87. DOI: 10.1016/j.seppur.2016.07.020.

8. Kamel, S., Abou-Yousef, H., Yousef, M. & El-Sakhawy, M. (2012). Potential use of bagasse and modified bagasse for removing of iron and phenol from water. Carbohydr. Polym. 88(1), 250–256. DOI: 10.1016/j.carbpol.2011.11.090.

9. Álvarez-Torrellas, S., Martin-Martinez, M., Gomes, H.T., Ovejero, G. & Garcia, J. (2017). Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons. Appl. Surf. Sci. 414, 424–434. DOI: 10.1016/j.apsusc.2017.04.054.

10. Ma, L., Zhu, J., Xi, Y., Zhu, R., He, H., Liang, X. & Ayoko, G.A. (2016). Adsorption of phenol, phosphate and Cd(II) by inorganic–organic montmorillonites: A comparative study of single and multiple solute. Colloid Surf. A. 497, 63–71. DOI: 10.1016/j.colsurfa.2016.02.032.

11. Cheng, W.P., Gao, W., Cui, X., Ma, J.H. & Li, R.F. (2016). Phenol adsorption equilibrium and kinetics on zeolite X/activated carbon composite. J. Taiwan Inst. Chem. E. 62, 192–198. DOI: 10.1016/j.jtice.2016.02.004.

12. Hasan, Z. & Jhung S.H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. J. Hazard. Mat. 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.

13. Mangrulkar, P.A., Kamble, S.P., Meshram, J. & Rayalu, S.S. (2008). Adsorption of phenol and o-chlorophenol by mesoporous MCM-41. J. Hazard. Mater. 160(2–3), 414–421. DOI: 10.1016/j.jhazmat.2008.03.013

14. Al-Hamdi, A.M., Sillanpää, M., Bora, T. & Dutta J. (2016). Efficient photocatalytic degradation of phenol in aqueous solution by SnO2: Sb nanoparticles. Appl. Surf. Sci. 370, 229–236. DOI: 10.1016/j.apsusc.2016.02.123.

15. Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L. Vaghetti, J.C.P. & Dias, S.L.P. (2016). Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. J. Mol. Liq. 223, 1067–1080. DOI: 10.1016/j.molliq.2016.09.032.

16. Zhang, D., Huo, P. & Liu, W. Behavior of phenol adsorption on thermal modified activated carbon. (2016). Chin. J. Chem. Eng. 24(4), 446–452. DOI: 10.1016/j.cjche.2015.11.022.

17. Nakagawa, Y., Molina-Sabio, M. & Rodríguez-Reinoso, F. (2007). Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Micropor. Mesopor. Mater. 103(1–3), 29–34. DOI: 10.1016/j.micromeso.2007.01.029.

18. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing. K.W.S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1070. DOI: 10.1515/pac-2014-1117.

19. López, M.V., Stoeckli, F., Moreno-Castilla, C. & Carrasco-Marina, F. (1999). On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8), 1215–1221. DOI: 10.1016/S0008-6223(98)00317-0.

20. Giraldo, L. & Moreno, J.C. (2000) Determination of the Immersion Enthalpy of activated carbon by Microcalorimetry of the Heat Conduction. Instrum. Sci. Technol. 28(2), 171–178. DOI: 10.1081/CI-100100970.

21. Neimark, A.V., Lin, Y., Ravikovitch, P.I. & Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47(7), 1617–1628. DOI: 10.1016/j.carbon.2009.01.050.

22. Silvestre-Albero, J., Gómez, C., Sepúlveda-Escribano, A. & Rodríguez-Reinoso, F. (2001). Characterization of microporous solids by Inmersion calorimetry. Colloid Surf. A. 187–188, 151–165. DOI: 10.1016/S0927-7757(01)00620-3.

23. Stoeckli, F. & Centeno, T.A. (1997). On the characterization of microporous carbons by inmersion calorimetry alone. Carbon, 35(8), 1097–1100. DOI: 10.1016/S0008-6223(97)00067-5.

24. Denoyel, R., Fernandez-Colinas, J., Grillet, Y. & Rouquerol, J. (1993). Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9(2), 515–518. DOI: 10.1021/la00026a025.

25. Navarrete, L., Giraldo, L. & Moreno, J.C. (2006). Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol. Rev Colomb Quím. 35(2), 215–224. DOI: 101007/s10973-006-7524-3.

26. Moreno-Castilla, C (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42(1), 83–94. DOI: 10.1016/j.carbon.2003.09.022.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 380 339 19
PDF Downloads 130 123 12