Simulation of SOFCs based power generation system using Aspen

Open access

Abstract

This study presents a thermodynamic Aspen simulation model for Solid Oxide Fuel Cells, SOFCs, based power generation system. In the first step, a steady-state SOFCs system model was developed. The model includes the electrochemistry and the diffusion phenomena. The electrochemical model gives good agreement with experimental data in a wide operating range. Then, a parametric study has been conducted to estimate effects of the oxygen to carbon ratio, O/C, on reformer temperature, fuel cell temperature, fuel utilization, overall fuel cell performance, and the results are discussed in this paper. In the second step, a dynamic analysis of SOFCs characteristic has been developed. The aim of dynamic modelling was to find the response of the system against the fuel utilization and the O/C ratio variations. From the simulations, it was concluded that both developed models in the steady and dynamic state were reasonably accurate and can be used for system level optimization studies of the SOFC based power generation system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Facci A.L. Cigolotti V. Jannelli E. & Ubertini S. (2017). Technical and economic assessment of a SOFC based energy system for combined cooling heating and power. Appl. Energy 192 563–574. DOI: 10.1016/j.apenergy.2016.06.105.

  • 2. Zhang W. Croiset E. Douglas P.L. Fowler M.W. & Entchev E. (2005). Simulation of tubular solid oxide fuel cell stack using AspenPlusTM unit operation models Energy Conv. Managem. 46. 181–196. DOI: 10.1016/j.enconman.2004.03.002.

  • 3. Ameri M. & Mohammadi R. (2013). Simulation of an atmospheric SOFC and gas turbine hybrid system using Aspen Plus software. Inter. J. Energy Res. 37 412–425. DOI: 10.1002/er.1941.

  • 4. Anderson T. Vijay P. & Tade M.O. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Design. 92 295–307. DOI: 10.1016/j.cherd.2013.07.025.

  • 5. Galvagno A. Prestipino M. Zafarana G. & Chiodo V. (2016). Analysis of an integrated agro-waste gasification and 120 kw SOFC CHP system: modeling and experimental investigation. Energia Proc. 101 528–535. DOI: 10.1016/j.egypro.2016.11.067.

  • 6. Doherty W. Reynolds A. & Kennedy D. (2010). Computer simulation of biomass gasification – Solid Oxide Fuel Cell power system using ASPEN Plus. Energy 35 4545–4555. DOI: 10.1016/j.energy.2010.04.051.

  • 7. Song T.W. Sohn J.L. Kim J.H. Kim T.S. Ro S.T. Suzuki K. (2005). Performance analysis of a tubular solid Oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model. J. Power Sourc. 142 30–42. DOI: 10.1016/j.jpowsour.2004.10.011.

  • 8. Achenbach E. (1994). Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J. Power Sour. 49 333–348. DOI: 10.1016/0378-7753(93)01833-4.

  • 9. Chan S.H. Khor K.A. & Xia Z.T. (2001). A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sour. 93 130–140. DOI: S0378-7753(00)00556-5.

  • 10. Kupecki J. Skrzypkiewicz M. Wierzbicki M. & Stepien M. (2015). Analysis of a micro-CHP unit with in-series SOFC stack fed by biogas. Energia Proc. 75 2021–2026. DOI: 10.1016/j.egypro.2015.07.265.

  • 11. Barelli L. Bidini G. Gallorini F. & Ottaviano A. (2001). An energetic-exergetic comparison between PEMFC and SOFC based micro-CHP systems. Inter. J. Hydrogen Energy 36 2011 3206–3214. DOI: 10.1016/j/ijhydene.2010.11.079.

  • 12. Campanari S. (2001). Thermodynamic model and parametric analysis of a tubular SOFC module. J. Power Sour. 92 1–2 26–34. DOI: S0378-7753(00)00494-8.

  • 13. EG & G. Services Parsons Inc. Science Applications International Corporation Fuel Cell Handbook National Technical Information Service U. S. Department of Commerce: Springfield V A 2004.

  • 14. Akkaya V.A. (2007). Electrochemical model for performance analysis of a tubular SOFC. Int. J. Energy Res. 31 1 79–98 DOI: 10.1002/er.1238.

  • 15. Timothy A. Periasamy V. & Moses T. (2014). An adaptable steady state Aspen Hysys model for the methane fuelled solid oxide fuel cell. Chem. Enginee. Res. Des. 92 295–307. DOI: 10.1016/j.cherd.2013.07.025.

  • 16. Kakac S. Pramuanjaroenkij A. & Zhou X.Y. (2007). A review of numerical modeling of solid Oxide fuel cells. Inter. J. Hydrogen Energy 32 761–786 2007. DOI: 10.1016/j.ijhydene.2006.11.028.

  • 17. Majewski A.J. & Dhir A. Silver as a current collector for SOFC 12th European SOFC & SOE Forum ISBN 978-3-905592-21-4 5–8 July 2016 Lucerna Switzerland.

  • 18. Minutillo M. Perna A. & Jannelli E.(2014). SOFC and MCFC system level modelling for hybrid plants performance prediction Inter. J. Hydrogen Energy. 39 21688–21699. DOI: 10.1016/j.ijhydeme.2014.09.082.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 622 321 11
PDF Downloads 303 179 4