Adsorption of propan-1-ol vapour on Sorbonorit 4 activated carbon – equilibrium and dynamic studies

Open access

Abstract

The study examined the adsorption of propan-1-ol (1PN) vapour on Sorbonorit 4 (S4) activated carbon in cyclic Electrothermal Temperature Swing Adsorption (ETSA) process. Dynamic adsorption capacity and breakthrough time were determined based on column studies. Thomas model was used to describe experimental breakthrough curves. Adsorption isotherms for 1PN vapour on S4 activated carbon were tested at 293 to 413 K. The experimental data were examined by using three multi-temperature isotherm models: Toth, Sips and hybrid Langmuir-Sips. Results indicate that S4 activated carbon is a heterogeneous adsorbent and the hybrid Langmuir-Sips model provides the best-fit experimental data. The energy requirement for 1PN electrothermal desorption from S4 bed (ca. 170–200 kJ/mol) was about 3 to 3.5 times larger than the isosteric heat of adsorption (56.8 kJ/mol), which was calculated using Toth adsorption isotherm.

1. European Union Risk Assessment Report: Propan-1-ol. Vol. 82, Part I – Environment. (2017, April) https://echa.europa.eu/documents/10162/3fd81f2f-b48d-4123-88ea-12e88b53850f

2. Moretti, E.C. (2002). Reduce VOC and HAP emissions. Chem. Eng. Prog. 98, 6, 30–40.

3. Bathen, D. & Breitbach, M. (2001). Adsorptionstechnik. Springer-Verlag, Berlin-Heidelberg.

4. Sharma, P.K. & Wankat, P.C. (2010). Solvent recovery by steamless Temperature Swing Carbon Adsorption processes. Ind. Eng. Chem. Res. 49, 11602–11613. DOI: 10.1021/ie1008019.

5. Downarowicz, D. & Gabruś, E. (2008). Electrothermal Temperature Swing Adsorption. A chance of effective VOC recovery from flue gases. Przem. Chem. 87, 768–774.

6. Downarowicz, D. & Gabruś E. (2010). Air purification from 1-propanol vapours in ETSA process. Air Protection in Theory and Practice, Institute of Environmental Engineering Polish Academy of Sciences in Zabrze. ISBN 978-83-60877-48-7.

7. Gu, J., Faqir, N.M. & Bart, H.J. (1999). Drying of an activated carbon column after steam regeneration. Chem. Eng. Technol. 22, 859–864.

8. Yaws, C.L. (2003). Yaws’ Handbook of thermodynamic and physical properties of chemical compounds. Knovel, New York.

9. PubChem, Open Chemistry Data base (2017, April). https://pubchem.ncbi.nlm.nih.gov/compound/1-propanol#section=Top

10. Nastaj, J. & Aleksandrzak, T. (2013). Adsorption isotherms of water, propan-2-ol, and methylbenzene vapors on Grade 03 silica gel, Sorbonorit 4 activated carbon, and Hisiv3000 zeolite. J. Chem. Eng. Data 58, 2629–2641. DOI: 10.1021/je400517c.

11. Downarowicz, D. (2015). Adsorption characteristics of propan-2-ol vapours on activated carbon Sorbonorit 4 in electrothermal temperature swing adsorption process. Adsorption 21, 87–98. DOI: 10.1007/s10450-015-9652-1.

12. Calero, M., Hernáinz, F., Blázquez, G., Tenorio, G. & Martín-Lara, M.A. (2009). Study of Cr (III) biosorption in a fixed-bed column. J. Hazard. Mater. 171, 886–893. DOI: 10.1016/j.jhazmat.2009.06.082.

13. Srivastava, V.C., Prasad, B., Mishra, I.M., Mall, I.D. & Swamy, M.M. (2008). Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed. Ind. Eng. Chem. Res. 47, 1603–1613. DOI: 10.1021/ie0708475.

14. Namane, A. & Hellal, A. (2006). The dynamic adsorption characteristics of phenol by granular activated carbon. J. Hazard. Mater. B137, 618–625. DOI: 10.1016/j.jhazmat.2006.02.052.

15. Gabruś, E. & Downarowicz, D. (2016). Anhydrous ethanol recovery from wet air in TSA systems - equilibrium and column studies. Chem. Eng. J. 288, 321–331. DOI: 10.1016/j.cej.2015.11.110.

16. Duong, D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press 1998, ISBN 1-86094-130-3.

17. Taqvi, S.M., Appel, W.S. & LeVan, M.D. (1999). Co-adsorption of organic compounds and water vapour on BPL activated carbon. 4. methanol, ethanol, propanol, butanol, and modelling. Ind. Eng. Chem. Res. 38, 240–250. DOI: 10.1021/ie980324k.

18. Lee, J.W., Shim, W.G., Yang, M.S. & Moon, H. (2004). Adsorption isotherms of polar and nonpolar organic compounds on MCM-48 at (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data. 49, 502–509. DOI: 10.1021/je030208a.

19. Downarowicz, D. & Aleksandrzak, T. (2016). Adsorption of popanol isomer vapors on Sorbonorit B4 activated carbon: Equilibrium and spectroscopic studies, J. Chem. Eng. Data. 61, 3652–365. DOI: 10.1021/acs.jced.6b00583.

20. Andreu, H.F. Stoeckli, R.H. Bradley. (2007). Specific and non-specific interactions on non-porous carbon black surfaces. Carbon 45, 1854–1864. DOI: 10.1016/j.carbon.2007.04.025.

21. Tolmachev, A.M., Firsov, D.A., Anuchin, K.M. & Fomkin A.A. (2008). Simulating of Alcohol Adsorption in Slitlike Micropores of Active Carbon by the Molecular Dynamics Method. Coll. J. 70, 486–496. DOI: 10.1134/S1061933X08040133.

22. Dombrowski, K.D., Lehmann, C.M., Sullivan, P.D., Ramirez, D., Rood, M.J. & Hay, K.J. (2004). Organic vapor recovery and energy efficiency during electric regeneration of an activated carbon fiber cloth adsorber. J. Environ. Eng. 130(3), 268–275. DOI: 10.1061/(ASCE)0733-9372(2004)130:3(268).

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 358 268 18
PDF Downloads 135 103 8