Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene

Open access


In our studies montmorillonite (MMT) was used as the heterogeneous, natural catalyst. This material was previously prepared by bentonite purification with help of the sedimentation method. The obtained catalyst was characterized by: XRD, SEM, BET and EDX. Catalytic tests with montmorillonite as the catalyst were performed with the natural terpene – R-(+)-limonene. This compound was oxidized with hydrogen peroxide and, moreover, in the separate process it was also isomerized. As the main products of limonene oxidation were detected: (1,2-8,9)-diepoxide, perillyl alcohol, carvone, carveol, 1,2-epoxylimonene and 1,2-epoxylimonene diol. In the isomerization of R-(+)-limonene were formed: terpinenes, terpinolene and p-cymene. Conversions of limonene in these processes reached 70–80%. The application of montmorillonite (the natural of origin) in the studied processes (oxidation and isomerization) is environmentally friendly, it allows to reduce the cost of the studied processes. The resulting products of the processes of oxidation and isomerization of R-(+)-limonene have many applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Królikowski W. & Rosłaniec Z. (2004). Polymer nanocomposites. Kompozyty 4 3–15 (in Polish)

  • 2. Wilpiszewska K. Antosik A.K. & Spychaj T. (2017). Novel hydrophilic carboxymethyl starch/montmorillonite nano-composite Films. Carbohydr. Polym. 128 82–89. DOI: 10.1016/j.carbpol.2015.04.023.

  • 3. Olejnik M. (2008). Polymer nanocomposites involving montmorillonite – preparation evaluation methods properties and application. Tech. Wyr. Włók. 67–74. (in Polish).

  • 4. Kacperski M. (2003). Polymer nanocomposites Kompozyty 3 225–231. (in Polish).

  • 5. Kacperski M. (2002). Polymer nanocomposites. Polimery. 47 801–807. (in Polish)

  • 6. Malesa M. (2004). Nanofillers of polymer composites. Elastomery 3 12–17 (in Polish)

  • 7. Sikora M. (2006). Rheological modifiers essential parameter of cosmetic products. Przem. Kosmetyczny 11 26–31. (in Polish)

  • 8. Kunert A. & Zaborski M. (2010). Construction properties and applications of layered minerals. Przem. Chem. 1 1510–1517. (in Polish)

  • 9. Komadel P. (2016). Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131 84–99. DOI: 10.1016/j.clay.2016.05.001.

  • 10. Fernandes C. Catrinescu C. Castilho P. Russo P.A. Carrott M.R. & Breen C. (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl. Catal. A: General. 318 108–120. DOI: 10.1016/j.apcata.2006.10.048.

  • 11. Koolia F. Liu Y. Alshahateet Solhe F. Messali M. & Bergaya F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43 357–363. DOI: 10.1016/j.clay.2008.10.006.

  • 12. Nagendrappa G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53 106–138. DOI: 10.1016/j.clay.2010.09.016.

  • 13. Stekrova M. Kumara N. Aho A. Sinev I. Grünert W. Dahl J. Roine J. Arzumanov S.S. Mäki-Arvela P. & Yu. Murzin D. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic alde-hyde. Appl. Catal. A: General. 470 162–176. DOI: 10.1016/j.apcata.2013.10.044.

  • 14. Comelli N. Avila M.C. Volzone C. & Ponzi M. (2013). Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11 689–697. DOI: 10.2478/s11532-013-0217-4.

  • 15. Ravasio N. Zaccheria F. Gervasini A. & Messi C. (2008). A new Fe based heterogeneous Lewis acid: Selective isomerization of a-pinene oxide. Catal. Commun. 9 1125–1127. DOI: 10.1016/j.catcom.2007.10.019.

  • 16. Kumar V. & Agarwal A.K. (2014). A review on catalytic terpene transformation over heterogenous catalyst Inter. J. Curr. Res. Chem. Pharm. Sci. 1 78–88.

  • 17. Volcho K. & Salakhutdinov N.F. (2008). Transformations of Terpenoids on Acidic Clays. Mini-Rev. Org. Chem. 5 345–354. DOI: 10.2174/157019308786242151.

  • 18. Yadav M.Kr. Chudasama C.D. & Jasra R.V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A: Chemical 216 51–59. DOI: 10.1016/j.molcata.2004.02.004.

  • 19. Yarovaya O.I. Korchagina D.V. Salakhutdinov N.F. & Tolstikov G.A. (2012). Reaction of isocembreol and alcohols on clay. Chem. Nat. Comp. 48 57–59. DOI: 0009-3130/12/4801-0056.

  • 20. Akgu M. Ozyagcı B. & Karabakan A.l. (2013). Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from a-pinene. J. Ind. Enginee. Chem. 19 240–249. DOI: 10.1016/j.jiec.2012.07.024.

  • 21. Ilina I.V. Suslov E.V. Khomenko T.M. Korchagina D.V. Volcho K.P. Salakhutdinov N.F. (2009). Natural Mont-morillonite Clay as Prebiotic Catalyst. Paleont. J. 43 958–964. DOI: 10.1134/S0031030109080139.

  • 22. Il’ina I.V. Volcho K.P. Korchagina D.V. Barkhash V.A. & Salakhutdinov N.F. (2007). Transformations of (–)-Myrtenal Epoxide over Askanite–Bentonite Clay. Rus. J. Org. Chem. 43 56–59. DOI: 10.1134/S1070428007010058.

  • 23. Wróblewska A. Makuch E. & Miądlicki P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today 268 121–129. DOI: 10.1016/j.cattod.2015.11.008.

  • 24. Marino D. Gallegos N.G. Bengoa J.F. Alvarez A.M. Cagnoli M.V. Casuscelli S.G. Herrero E.R. & Marchetti S.G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods: Limonene epoxidation with H2O2. Catal. Today. 133–135 632–638. DOI: 10.1016/j.cattod.2007.12.111.

  • 25. Wróblewska A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19 19907–19922. DOI: 10.3390/molecules191219907.

  • 26. Pinto L.D. Dupont J. de Souza R.F. Bernardo-Gusmão K. (2008). Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids. Catal. Comm. 9 135–139. DOI: 10.1016/j.catcom.2007.05.025.

  • 27. Bussi J. López A. Peña F. Timbal P. Paz D. Lorenzo D. & Dellacasa E. (2003). Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl. Catal. A: General 253 177–189. DOI: 10.1016/S0926-860X(03)00519-2.

  • 28. Ali B. Al-Wabel N.A. Shams S. Ahamad A. Khan S.A. & Anwar F. (2015). Essential oils used in aromatherapy: A systemic review. APJTB 5 601–611. DOI: 10.1016/j.apjtb.2015.05.007.

  • 29. Chen T.C. Fonseca C.O.D. & Schönthal A.H. (2015). Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Can. Res. 5 1580–1593.

  • 30. Li C.D. Sablong R.J. & Koning Cor E. (2016). Chemoselective Alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. 128 11744–11748. DOI: 10.1002/anie.201604674.

  • 31. Morinaga H. & Sakamoto M. (2017). Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Lett. 58 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.

  • 32. Linnekoski J.A. Asikainen M. Heikkinen H. Kaila R. K. Räsänen J. & Harlin A. (2014). Production of p-cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process Res. & Dev. 18 1468–1475. DOI. 10.1021/op500160f.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 652 419 2
PDF Downloads 257 176 3