Preparation and properties of cellulose membranes with graphene oxide addition

Open access

Abstract

The paper presents results of research on the preparation of cellulose membranes with graphite oxide addition (GO/CEL). Initially, a cellulose (CEL) solution in 1-ethyl-3-methylimidazole acetate (EMIMAc) was obtained, to which graphene oxide (GO) dispersed in N,N-dimethylformamide (DMF) was added. From this solution, composite membranes were formed using phase inversion method. It was observed that the GO addition influences the physico-chemical properties of GO/CEL composite membranes, resulting in an increase in their mass per unit area, thickness and density, and a decrease in sorption properties. In addition, the study of transport properties has shown that GO/CEL membranes do not absorb BSA particles on their surface, which prevents the unfavorable phenomenon of fouling. An important feature of the obtained membranes is the specific permeate flux which reaches high values (~124 L/m2×h) at 3.8% of the GO addition to the cellulose matrix.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ramamoorthy S.K. Skrifvars M. & Persson A. (2015). A Review of Natural Fibers Used in Biocomposites: Plant Animal and Regenerated Cellulose Fibers. Polym. Rev. 55 107–162. DOI: 10.1080/15583724.2014.971124.

  • 2. Yang W. Fang B. & Tang Y.Y. (2016). Fast and Accurate Vanishing Point Detection and Its Application in Inverse Perspective Mapping of Structured Road IEEE Trans. Syst. Man Cybern. Syst. 1–12. DIO: 10.1109/TSMC.2016.2616490.

  • 3. Wendler F. Meister F. Wawro D. Wesolowska E. Ciechańska D. Saake B. Puls J. le Moigne N. & Navard P. (2010). Polysaccharide blend fibres formed from NaOH N-methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibres Text. East. Eur. 79 21–30.

  • 4. Pinkert A. Marsh K.N. Pang S. & Staiger M.P. (2009) Ionic liquids and their interaction with cellulose. Chem. Rev. 109 6712–6728. DOI:10.1021/cr9001947.

  • 5. Lindman B. Karlström G. & Stigsson L. (2010). On the mechanism of dissolution of cellulose. J. Mol. Liq. 156 76–81. DOI: 10.1016/j.molliq.2010.04.016.

  • 6. Fink H.P. Weigel P. Purz H.J. & Ganster J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26 1473–1524. DOI: 10.1016/S0079-6700(01)00025-9.

  • 7. Wang S. Lu A. & Zhang L. (2016). Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53 169–206. DOI: 10.1016/j.progpolymsci.2015.07.003.

  • 8. Swatloski R.P. Holbrey J.D. & Rogers R.D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5 361. DOI: 10.1039/b304400a.

  • 9. Gathergood N. Garcia M.T. & Scammells P.J. (2004). Biodegradable ionic liquids: Part I. Concept preliminary targets and evaluation. Green Chem. 6 166. DOI: 10.1039/b315270g.

  • 10. Novoselov N.P. Sashina E.S. Kuz’mina O.G. & Troshenkova S.V. (2007). Ionic liquids and their use for the dissolution of natural polymers. Russ. J. Gen. Chem. 77 1395–1405. DOI: 10.1134/S1070363207080178.

  • 11. Zhu S. Wu Y. Chen Q. Yu Z. Wang C. Jin S. Ding Y. & Wu G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8 325. DOI: 10.1039/b601395c.

  • 12. Rambo C.R. Recouvreux D.O.S. Carminatti C.A. Pitlovanciv A.K. Antônio R.V. & Porto L.M. (2008). Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater. Sci. Eng. C. 28 549–554. DOI: 10.1016/j.msec.2007.11.011.

  • 13. Kuo Y.N. & Hong J. (2005). A new method for cellulose membrane fabrication and the determination of its characteristics. J. Coll. Inter. Sci. 285 232–238. DOI: 10.1016/j.jcis.2004.10.043.

  • 14. Xiao W. Yin W. Xia S. & Ma P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr. Polym. 87 2019–2023. DOI: 10.1016/j.carbpol.2011.10.012.

  • 15. Zhao H. Jones C.L. Baker G.A. Xia S. Olubajo O. & Person V.N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139 47–54. DOI: 10.1016/j.jbiotec.2008.08.009.

  • 16. Ślusarczyk C. Fryczkowska B. Sieradzka M. & Janicki J. (2016). Small-angle X-ray scattering studies of pore structure in cellulose membranes. Acta Phys. Pol. A. 229–232. DOI: 10.12693/APhysPolA.129.229.

  • 17. Östlund Å. Idström A. Olsson C. Larsson P.T. & Nordstierna L. (2013). Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 20 1657–1667. DOI: 10.1007/s10570-013-9982-7.

  • 18. Fryczkowski R. Gorczowska M. Ślusarczyk C. Fryczkowska B. & Janicki J. (2013). The possibility of obtaining graphene/polymer composites from graphene oxide by a one step process. Compos. Sci. Technol. 80 87–92. DOI: 10.1016/j.compscitech.2013.03.012.

  • 19. Guerrero-Contreras J. & Caballero-Briones F. (2015). Graphene oxide powders with different oxidation degree prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153 209–220. DOI: 10.1016/j.matchemphys.2015.01.005.

  • 20. Yoon K.Y. An S.J. Chen Y. Lee J.H. Bryant S.L. Ruoff R.S. Huh C. & Johnston K.P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. J. Coll. Inter. Sci. 403 1–6. DOI: 10.1016/j.jcis.2013.03.012.

  • 21. Texter J. (2014). Graphene dispersions. Curr. Opin. Coll. Inter. Sci. 19 163–174. DOI: 10.1016/j.cocis.2014.04.004.

  • 22. Parades J.I. Villar-Rodil S. Martínez-Alonso A. & Tascón J.M.D. (2008). Graphene oxide dispersions in organic solvents. Langmuir 24 10560–10564. DOI: 10.1021/la801744a.

  • 23. Sitko R. Zawisza B. & Malicka E. (2013). Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal. Chem. 51 33–43. DOI: 10.1016/j.trac.2013.05.011.

  • 24. Musico Y.L.F. Santos C.M. Dalida M.L.P. & Rodrigues D.F. (2014). Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustain. Chem. Eng. 2 1559–1565. DOI: 10.1021/sc500044p.

  • 25. Goh K. Setiawan L. Wei L. Jiang W. Wang R. & Chen Y. (2013). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J. Memb. Sci. 446 244–254. DOI: 10.1016/j.memsci.2013.06.022.

  • 26. Das R. Ali M.E. Hamid S.B.A. Ramakrishna S. Chowdhury Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336 97–109. DOI: 10.1016/j.desal.2013.12.026.

  • 27. Hinds B.J. Chopra N. Rantell T. Andrews R. Gavalas V. & Bachas L.G. (2004). Aligned multiwalled carbon nanotube membranes. Science. 303 62–65. DOI: 10.1126/science.1092048.

  • 28. Celik E. Park H. Choi H. & Choi H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45 274–282. DOI: 10.1016/j.watres.2010.07.060.

  • 29. Mahmoud K.A. Mansoor B. Mansour A. & Khraisheh M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 356 208–225. DOI: 10.1016/j.desal.2014.10.022.

  • 30. Han Y. Xu Z. & Gao C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23 3693–3700. DOI: 10.1002/adfm.201202601.

  • 31. Joshi R.K. Alwarappan S. Yoshimura M Sahajwalla V. & Nishina Y. (2015). Graphene oxide: the new membrane material. Appl. Mater. Today 1–12. DOI: 10.1016/j.apmt.2015.06.002.

  • 32. He L. Dumée L.F. Feng C. Velleman L. Reis R. She F. Gao W. & Kong L. (2015). Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365 126–135. DOI: 10.1016/j.desal.2015.02.032.

  • 33. Park M.J. Phuntsho S. He T. Nisola G.M. Tijing L.D. Li X.M. Chen G. Chung W.J. & Shon H.K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Memb. Sci. 493 496–507. DOI: 10.1016/j.memsci.2015.06.053.

  • 34. Xia S. Ni M. Zhu T. Zhao Y. & Li N. (2015). Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371 78–87. DOI: 10.1016/j.desal.2015.06.005.

  • 35. Faria A.F. Liu C. Xie M. Perreault F. Nghiem L.D. Ma J. & Elimelech M. (2017). Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Memb. Sci. 525 146–156. DOI: 10.1016/j.memsci.2016.10.040.

  • 36. Goh P.S. & Ismail A.F. (2015). Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination. 356 115–128. DOI: 10.1016/j.desal.2014.10.001.

  • 37. Nair R.R. Wu H.A. Jayaram P.N. Grigorieva I.V. & Geim A.K. (2012). Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 335 442–444. DOI: 10.1126/science.1211694.

  • 38. Bhadra M. Roy S. & Mitra S. (2016). Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 378 37–43. DOI: 10.1016/j.desal.2015.09.026.

  • 39. Zhang X. Yu H. Yang H. Wan Y. Hu H. Zhai Z. & Qin J. (2015). Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J. Coll. Inter. Sci. 437 277–282. DOI: 10.1016/j.jcis.2014.09.048.

  • 40. Zhu W. Li W. He Y. & Duan T. (2015). In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl. Surf. Sci. 338 22–26. DOI: 10.1016/j.apsusc.2015.02.030.

  • 41. Wan C. & Li J. (2016). Graphene oxide/cellulose aerogels nanocomposite: Preparation pyrolysis and application for electromagnetic interference shielding. Carbohydr. Polym. 150 172–179. DOI: 10.1016/j.carbpol.2016.05.051.

  • 42. Rui-Hong X. Peng-Gang R. Jian H. Fang R. Lian-Zhen R. & Zhen-Feng S. (2016). Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr. Polym. 138 222–228. DOI: 10.1016/j.carbpol.2015.11.042.

  • 43. Liu G. Ye H. Li A. Zhu C. Jiang H. Liu Y. Han K. & Zhou Y. (2016). Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon N. Y. 110 56–61. DOI: 10.1016/j.carbon.2016.09.005.

  • 44. Huang Q. Xu M. Sun R. & Wang X. (2016). Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Ind. Crops Prod. 85 198–203. DOI: 10.1016/j.indcrop.2016.03.006.

  • 45. Yang X.N. Xue D.D. Li J.Y. Liu M. Jia S.R. Chu L.Q. Wahid F. Zhang Y.M. & Zhong C. (2016). Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr. Polym. 136 1152–1160. DOI: 10.1016/j.carbpol.2015.10.020.

  • 46. Kafy A. Akther A. Shishir M.I.R. Kim H.C Yun Y. & Kim J. (2016). Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors Actuators A Phys. 247 221–226. DOI: 10.1016/j.sna.2016.05.045.

  • 47. Kim C.J. Khan W. Kim D.H. Cho K.S. & Park S.Y. (2011). Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym. 86 903–909. DOI: 10.1016/j.carbpol.2011.05.041.

  • 48. Tang L. Li X. Du D. & He C. (2012). Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Prog. Nat. Sci. Mater. Int. 22 341–346. DOI: 10.1016/j.pnsc.2012.06.005.

  • 49. Cao Y. Wu J. Zhang J. Li H. Zhang Y. & He J. (2009). Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147 13–21. DOI: 10.1016/j.cej.2008.11.011.

  • 50. Hummers W.S. & Offeman R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80 1339–1339. DOI: 10.1021/ja01539a017.

  • 51. Fryczkowska B. Sieradzka M. Sarna E. Fryczkowski R. & Janicki J. (2015). Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 132 DOI: 10.1002/app.42789.

  • 52. Zinadini S. Zinatizadeh A.A. Rahimi M. Vatanpour V. & Zangeneh H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci. 453 292–301. DOI: 10.1016/j.memsci.2013.10.070.

  • 53. Wypych G. (2012). Handbook of Polymers (2nd edition). Ontario Canada: ChemTec Publishing.

  • 54. Kosan B. Michels C. & Meister F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose 15 59–66. DOI: 10.1007/s10570-007-9160-x.

  • 55. Gupta K. M. Hu Z. & Jiang J. (2011). Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer (Guildf) 52 5904–5911. DOI: 10.1016/j.polymer.2011.10.035.

  • 56. Xu A. Guo X. & Xu R. (2015). Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate-+DMAc solvent. Int. J. Biol. Macromol. 81 1000–1004. DOI: 10.1016/j.ijbiomac.2015.09.058.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1176 646 18
PDF Downloads 568 373 10