Preparation and properties of cellulose membranes with graphene oxide addition

Abstract

The paper presents results of research on the preparation of cellulose membranes with graphite oxide addition (GO/CEL). Initially, a cellulose (CEL) solution in 1-ethyl-3-methylimidazole acetate (EMIMAc) was obtained, to which graphene oxide (GO) dispersed in N,N-dimethylformamide (DMF) was added. From this solution, composite membranes were formed using phase inversion method. It was observed that the GO addition influences the physico-chemical properties of GO/CEL composite membranes, resulting in an increase in their mass per unit area, thickness and density, and a decrease in sorption properties. In addition, the study of transport properties has shown that GO/CEL membranes do not absorb BSA particles on their surface, which prevents the unfavorable phenomenon of fouling. An important feature of the obtained membranes is the specific permeate flux which reaches high values (~124 L/m2×h) at 3.8% of the GO addition to the cellulose matrix.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ramamoorthy, S.K., Skrifvars, M. & Persson, A. (2015). A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 55, 107–162. DOI: 10.1080/15583724.2014.971124.

  • 2. Yang, W., Fang, B. & Tang, Y.Y. (2016). Fast and Accurate Vanishing Point Detection and Its Application in Inverse Perspective Mapping of Structured Road IEEE Trans. Syst. Man, Cybern. Syst. 1–12. DIO: 10.1109/TSMC.2016.2616490.

  • 3. Wendler, F., Meister, F., Wawro, D., Wesolowska, E., Ciechańska, D., Saake, B., Puls, J., le Moigne, N. & Navard, P. (2010). Polysaccharide blend fibres formed from NaOH, N-methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate. Fibres Text. East. Eur. 79, 21–30.

  • 4. Pinkert, A., Marsh, K.N., Pang, S. & Staiger, M.P. (2009) Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728. DOI:10.1021/cr9001947.

  • 5. Lindman, B., Karlström, G. & Stigsson L. (2010). On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81. DOI: 10.1016/j.molliq.2010.04.016.

  • 6. Fink, H.P., Weigel, P., Purz, H.J. & Ganster, J. (2001). Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 26, 1473–1524. DOI: 10.1016/S0079-6700(01)00025-9.

  • 7. Wang, S., Lu, A. & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Prog. Polym. Sci. 53, 169–206. DOI: 10.1016/j.progpolymsci.2015.07.003.

  • 8. Swatloski, R.P., Holbrey, J.D. & Rogers, R.D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem. 5, 361. DOI: 10.1039/b304400a.

  • 9. Gathergood, N., Garcia, M.T. & Scammells, P.J. (2004). Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 6, 166. DOI: 10.1039/b315270g.

  • 10. Novoselov, N.P., Sashina, E.S., Kuz’mina, O.G. & Troshenkova, S.V. (2007). Ionic liquids and their use for the dissolution of natural polymers. Russ. J. Gen. Chem. 77, 1395–1405. DOI: 10.1134/S1070363207080178.

  • 11. Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y. & Wu, G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325. DOI: 10.1039/b601395c.

  • 12. Rambo, C.R., Recouvreux, D.O.S., Carminatti, C.A., Pitlovanciv, A.K., Antônio, R.V. & Porto, L.M. (2008). Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater. Sci. Eng. C. 28, 549–554. DOI: 10.1016/j.msec.2007.11.011.

  • 13. Kuo, Y.N. & Hong, J. (2005). A new method for cellulose membrane fabrication and the determination of its characteristics. J. Coll. Inter. Sci. 285, 232–238. DOI: 10.1016/j.jcis.2004.10.043.

  • 14. Xiao, W., Yin, W., Xia, S. & Ma, P. (2012). The study of factors affecting the enzymatic hydrolysis of cellulose after ionic liquid pretreatment. Carbohydr. Polym. 87, 2019–2023. DOI: 10.1016/j.carbpol.2011.10.012.

  • 15. Zhao, H., Jones, C.L., Baker, G.A., Xia, S., Olubajo, O. & Person, V.N. (2009). Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139, 47–54. DOI: 10.1016/j.jbiotec.2008.08.009.

  • 16. Ślusarczyk, C., Fryczkowska, B., Sieradzka, M. & Janicki, J. (2016). Small-angle X-ray scattering studies of pore structure in cellulose membranes. Acta Phys. Pol. A. 229–232. DOI: 10.12693/APhysPolA.129.229.

  • 17. Östlund, Å., Idström, A., Olsson, C., Larsson, P.T. & Nordstierna, L. (2013). Modification of crystallinity and pore size distribution in coagulated cellulose films. Cellulose 20 1657–1667. DOI: 10.1007/s10570-013-9982-7.

  • 18. Fryczkowski, R., Gorczowska, M., Ślusarczyk, C., Fryczkowska, B. & Janicki, J. (2013). The possibility of obtaining graphene/polymer composites from graphene oxide by a one step process. Compos. Sci. Technol. 80, 87–92. DOI: 10.1016/j.compscitech.2013.03.012.

  • 19. Guerrero-Contreras, J. & Caballero-Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Mater. Chem. Phys. 153, 209–220. DOI: 10.1016/j.matchemphys.2015.01.005.

  • 20. Yoon, K.Y., An, S.J., Chen, Y., Lee, J.H., Bryant, S.L., Ruoff, R.S., Huh, C. & Johnston, K.P. (2013). Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. J. Coll. Inter. Sci. 403, 1–6. DOI: 10.1016/j.jcis.2013.03.012.

  • 21. Texter, J. (2014). Graphene dispersions. Curr. Opin. Coll. Inter. Sci. 19, 163–174. DOI: 10.1016/j.cocis.2014.04.004.

  • 22. Parades, J.I., Villar-Rodil, S., Martínez-Alonso, A. & Tascón, J.M.D. (2008). Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564. DOI: 10.1021/la801744a.

  • 23. Sitko, R., Zawisza, B. & Malicka, E. (2013). Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal. Chem. 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.

  • 24. Musico, Y.L.F., Santos, C.M., Dalida, M.L.P. & Rodrigues, D.F. (2014). Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustain. Chem. Eng. 2, 1559–1565. DOI: 10.1021/sc500044p.

  • 25. Goh, K., Setiawan, L., Wei, L. Jiang, W., Wang, R. & Chen, Y. (2013). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process. J. Memb. Sci. 446, 244–254. DOI: 10.1016/j.memsci.2013.06.022.

  • 26. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 336, 97–109. DOI: 10.1016/j.desal.2013.12.026.

  • 27. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. & Bachas, L.G. (2004). Aligned multiwalled carbon nanotube membranes. Science. 303, 62–65. DOI: 10.1126/science.1092048.

  • 28. Celik, E., Park, H., Choi, H. & Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 45, 274–282. DOI: 10.1016/j.watres.2010.07.060.

  • 29. Mahmoud, K.A., Mansoor, B., Mansour, A. & Khraisheh, M. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination 356, 208–225. DOI: 10.1016/j.desal.2014.10.022.

  • 30. Han, Y., Xu, Z. & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700. DOI: 10.1002/adfm.201202601.

  • 31. Joshi, R.K., Alwarappan, S., Yoshimura, M, Sahajwalla, V. & Nishina, Y. (2015). Graphene oxide: the new membrane material. Appl. Mater. Today 1–12. DOI: 10.1016/j.apmt.2015.06.002.

  • 32. He, L., Dumée, L.F., Feng, C., Velleman, L., Reis, R., She, F., Gao, W. & Kong, L. (2015). Promoted water transport across graphene oxide–poly(amide) thin film composite membranes and their antibacterial activity. Desalination 365, 126–135. DOI: 10.1016/j.desal.2015.02.032.

  • 33. Park, M.J., Phuntsho, S., He, T., Nisola, G.M., Tijing, L.D., Li, X.M., Chen, G., Chung, W.J. & Shon, H.K. (2015). Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes. J. Memb. Sci. 493, 496–507. DOI: 10.1016/j.memsci.2015.06.053.

  • 34. Xia, S., Ni, M., Zhu, T., Zhao, Y. & Li, N. (2015). Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371, 78–87. DOI: 10.1016/j.desal.2015.06.005.

  • 35. Faria, A.F., Liu, C., Xie, M., Perreault, F., Nghiem, L.D., Ma, J. & Elimelech, M. (2017). Thin-film composite forward osmosis membranes functionalized with graphene oxide–silver nanocomposites for biofouling control. J. Memb. Sci. 525, 146–156. DOI: 10.1016/j.memsci.2016.10.040.

  • 36. Goh, P.S. & Ismail, A.F. (2015). Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination. 356, 115–128. DOI: 10.1016/j.desal.2014.10.001.

  • 37. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. & Geim, A.K. (2012). Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 335, 442–444. DOI: 10.1126/science.1211694.

  • 38. Bhadra, M., Roy, S. & Mitra, S. (2016). Desalination across a graphene oxide membrane via direct contact membrane distillation. Desalination 378, 37–43. DOI: 10.1016/j.desal.2015.09.026.

  • 39. Zhang, X., Yu, H., Yang, H., Wan, Y., Hu, H., Zhai, Z. & Qin, J. (2015). Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J. Coll. Inter. Sci. 437, 277–282. DOI: 10.1016/j.jcis.2014.09.048.

  • 40. Zhu, W., Li, W., He, Y. & Duan, T. (2015). In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl. Surf. Sci. 338, 22–26. DOI: 10.1016/j.apsusc.2015.02.030.

  • 41. Wan, C. & Li, J. (2016). Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 150, 172–179. DOI: 10.1016/j.carbpol.2016.05.051.

  • 42. Rui-Hong, X., Peng-Gang, R., Jian, H., Fang, R., Lian-Zhen, R. & Zhen-Feng, S. (2016). Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr. Polym. 138, 222–228. DOI: 10.1016/j.carbpol.2015.11.042.

  • 43. Liu, G., Ye, H., Li, A., Zhu, C., Jiang, H., Liu, Y., Han, K. & Zhou, Y. (2016). Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon N. Y. 110, 56–61. DOI: 10.1016/j.carbon.2016.09.005.

  • 44. Huang, Q., Xu, M., Sun, R. & Wang, X. (2016). Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Ind. Crops Prod. 85, 198–203. DOI: 10.1016/j.indcrop.2016.03.006.

  • 45. Yang, X.N., Xue, D.D., Li, J.Y., Liu, M., Jia, S.R., Chu, L.Q., Wahid, F., Zhang, Y.M. & Zhong, C. (2016). Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydr. Polym. 136, 1152–1160. DOI: 10.1016/j.carbpol.2015.10.020.

  • 46. Kafy, A., Akther, A., Shishir, M.I.R., Kim, H.C, Yun, Y. & Kim, J. (2016). Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors Actuators, A Phys. 247, 221–226. DOI: 10.1016/j.sna.2016.05.045.

  • 47. Kim, C.J., Khan, W., Kim, D.H., Cho, K.S. & Park, S.Y. (2011). Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydr. Polym. 86, 903–909. DOI: 10.1016/j.carbpol.2011.05.041.

  • 48. Tang, L., Li, X., Du, D. & He, C. (2012). Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Prog. Nat. Sci. Mater. Int. 22, 341–346. DOI: 10.1016/j.pnsc.2012.06.005.

  • 49. Cao, Y., Wu, J., Zhang, J., Li, H., Zhang, Y. & He, J. (2009). Room temperature ionic liquids (RTILs): A new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21. DOI: 10.1016/j.cej.2008.11.011.

  • 50. Hummers, W.S. & Offeman, R.E. (1958). Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80, 1339–1339. DOI: 10.1021/ja01539a017.

  • 51. Fryczkowska, B., Sieradzka, M., Sarna, E., Fryczkowski, R. & Janicki, J. (2015). Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. J. Appl. Polym. Sci. 132, DOI: 10.1002/app.42789.

  • 52. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci. 453, 292–301. DOI: 10.1016/j.memsci.2013.10.070.

  • 53. Wypych, G. (2012). Handbook of Polymers (2nd edition). Ontario, Canada: ChemTec Publishing.

  • 54. Kosan, B., Michels, C. & Meister, F. (2008). Dissolution and forming of cellulose with ionic liquids. Cellulose 15, 59–66. DOI: 10.1007/s10570-007-9160-x.

  • 55. Gupta, K. M., Hu, Z. & Jiang, J. (2011). Mechanistic understanding of interactions between cellulose and ionic liquids: A molecular simulation study. Polymer (Guildf) 52, 5904–5911. DOI: 10.1016/j.polymer.2011.10.035.

  • 56. Xu, A., Guo, X. & Xu, R. (2015). Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate-+DMAc solvent. Int. J. Biol. Macromol. 81, 1000–1004. DOI: 10.1016/j.ijbiomac.2015.09.058.

OPEN ACCESS

Journal + Issues

Search