Open Access

Galvanic coupling effects for module-mounting elements of ground-mounted photovoltaic power station


Cite

This communication reports on the concerns associated with possible generation of galvanic coupling effects for construction materials that are used to manufacture mounting assemblies for ground-mounted photovoltaic (PV) power stations. For this purpose, six macro-corrosion galvanic cells were assembled, including: hot-dip Zn/Magnelis®-coated steel/Al and stainless steel (SS)/Al cells. Corrosion experiments involved continuous, ca. three-month exposure of these couplings in 3 wt.% NaCl solution, conducted at room temperature for a stable pH value of around 8. All corrosion cells were subjected to regular assessment of galvanic current-density and potential parameters, where special consideration was given to compare the corrosion behaviour of Zn-coated steel samples with that of Magnelis®-coated electrodes. Characterization of surface condition and elemental composition for examined materials was carried-out by means of SEM and EDX spectroscopy techniques.

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering