Change in dust collection efficiency of liquid collectors in conditions of dedusting liquid recirculation

Open access


The high efficiency of industrial wet scrubbers is the result of a simultaneous formation of dust particle collectors. Collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of a circulating unit. The efficiency of dust collection process also depends on the ability of dust particles to be absorbed by collectors. The study provides an experimental analysis of the effect of the increasing concentration of a dust collection liquid in the conditions of full liquid recirculation on the efficiency of dust collection process in the examined types of collectors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Łopata S. & Ocłoń P. (2012). Modelling and optimizing operating conditions of heat exchanger with finned elliptical tubes. In L. Hector Juarez (Ed.) Fluid dynamics computational modeling and applications (pp. 327–356). Rijeka Croatia: InTech.

  • 2. Ocłoń P. Łopata St. Nowak M. & Benim A. (2014). Numerical study on the effect of inner tube fouling on the thermal performance of high-temperature fin-and-tube heat exchanger. Prog. Comput. Fluid Dyn. 15(5) 290. DOI: 10.1504/PCFD.2015.072014.

  • 3. Brauer H. Dyląg M. & Talaga J. (1989). Zur fluiddynamik von gerührten gas/feststoff/fltssigkeits-systemen. Chem. Ing. Tech. 61 978–979 (in German).

  • 4. Brauer H. Dyląg M. & Talaga J. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62 239–245 (in German).

  • 5. Dyląg M. & Talaga J. (1995). Modeling of multiphase flows. Chem. Process Eng. 16(3) 407–420.

  • 6. Kabsch M. (1976). Methods of dust wettability measurements. Wrocław Poland: Wroclaw University of Technology Publisher (in Polish).

  • 7. Nazarow G. Krawczyk J. Blinicziew W. Czagin O. (2000). Influence of the design of the dust collecting apparatus on the limiting concentration of the irrigating suspension. Himia Himic. Tehnol. 43(2) 80–85 (in Russian).

  • 8. Krawczyk J. (2015). Development of wet methods of industrial gasses dedustind on the basis of experimental investigations. Cracow Poland: Cacow University of Technology Publisher (in Polish).

  • 9. Krawczyk J. Dyląg M. & Rosiński J. (1998). Vermin-derung des wasserverbrauchs bei der entstaubung. Gefahrst. Reinhalt. L. 59(1) 45–49.

  • 10. Byeon S.H. Lee B.K. & Mohan B.R. (2012). Removal of ammonia and particulate matter using a modified turbulent wet scrubbing system. Sep. Purif. Technol. 98 221–229. DOI: 10.1016/j.seppur.2012.07.014.

  • 11. Mohan Jain R. & Meikap B. (2008). Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber. Sep. Purif. Technol. 63 (2) 269–277. DOI: 10.1016/j.seppur.2008.05.006.

  • 12. Kim H. Jung C. Oh S. & Lee K. (2001). Particle removal efficiency of gravitational wet scrubber considering diffusion interception and impaction. Environ. Eng. Sci. 18 (2) 125–136. DOI: 10.1089/10928750151132357.

  • 13. Lim K. Lee S. & Park H. (2006). Prediction for particle removal efficiency of a reverse jet scrubber. J. Aerosol. Sci. 37 (12) 1826–1839. DOI: 10.1016/j.jaerosci.2006.06.010.

  • 14. Mohan B. Biswas S. & Meikap B. (2008). Performance characteristics of the particulates scrubbing in a counter-current spray-column. Sep. Purif. Technol. 61(1) 96–102. DOI: 10.1016/j.seppur.2007.09.018.

  • 15. Meikap B. & Biswas M. (2004). Fly-ash removal efficiency in a modified multi-stage bubble column scrubber. Sep. Purif. Technol. 36(3) 177–190. DOI: 10.1016/S1383-5866(03)00213-2.

  • 16. Ebert F. & Büttner H. (1996). Recent investigations with nozzle scrubbers. Powder Technol. 86(1) 31–36. DOI: 10.1016/0032-5910(95)03034-4.

  • 17. Gemci T. & Ebert F. (1992). Prediction of the particle capture efficiency based on the combined mechanisms (turbulent diffusion inertial impaction interception and gravitation) by a 3-D simulation of a wet scrubber. J. Aerosol. Sci. 23 769–772. DOI: 10.1016/0021-8502(92)90525-Z.

  • 18. Park S. Jung C. Jung K. Lee B. & Lee K. (2005). Wet scrubbing of polydisperse aerosols by freely falling droplets. J. Aerosol. Sci. 36 1444–1458. DOI: 10.1016/j.jaerosci.2005.03.012.

  • 19. Wang Q. Chen X. & Gong X. (2013). The particle removing characteristics in a fixed valve tray column. Ind. Eng. Chem. Res. 52(9) 3441–3452. DOI: 10.1021/ie3027422.

  • 20. Krawczyk J. (1996). Wet dedusting heat and mass exchange in apparatuses of intense performance. Moscow Russia: Russian National Academy Publisher.

  • 21. Talaga J. Brauer H. & Dyląg M. (1996). Modellvorstellung zur entstehung der vollständigen suspension im rühbehälter. Forsch. Ingenieurwes 62(9) 239–246. DOI: 10.1007/BF02601430.

  • 22. Löffler F. (1988). Staubabscheiden. New York USA: Georg Thieme Verlag.

  • 23. Krawczyk J. Czagin O. & Postnikowa I. (2010). The change of fractional dedusting efficiency with increase of liquid concentration for different wettability dusts. In proceedings of IX International Conference “Theoretical Basics of Energy and Resource-saving Processes Equipment and Environmentally Safe Industries” 28–30 September 2010 (pp. 121–128). Ivanovo Russia: Ivanovo Stte University of Chemistry and Technology Publisher (in Polish).

  • 24. Krawczyk J. & Pikoń J. (1986). Abscheider mit zellen-ftllkorpern. Staub. Reinhalt. Luft 1 22–25 (in German).

  • 25. Dłuska E. Hubacz R. Wroński S. Kamieński J. Dyląg M. & Wójtowicz R. (2007). The influence of helical flow on water fuel emulsion preparation. Chem. Eng. Commun. 194 (10) 1271–1286. DOI: 10.1080/00986440701293959.

  • 26. Krawczyk J. Roszak Z. & Wisła H. (2006) Dedusting in bubbling and drop zones of periodic apparatus. Chem. Enginee. Equip. 45(37) 99–101 (in Polish).

  • 27. Wisła H. (2009). Wet dedusting for full liquid recirculation. Doctoral dissertation Cracow University of Technology Cracow Poland (in Polish).

  • 28. Krawczyk J. Maszek L. Mieszkowski A. & Roszak Z. (2008). Wet dust extraction in the condition of total liquid recirculation. Czasopismo Techniczne – Technical Transactions 2-M/2008 (2) 143–154 (in Polish).

  • 29. Krawczyk J. Czagin O. & Postnikowa I. (2012). Changes in the dust capture during the impact aerosol of the liquid surface. Czasopismo Techniczne – Technical Transactions 2-M/2012 (6) 207–214 (in Polish).

  • 30. Szatko W. Blinicziew W. & Krawczyk J. (2011). Comparison of mathematical models describing changes of the suspension absorption capacity and thermal resistance of the sludge. In G. Wozny & Ł. Hady (Eds.) Process Engineering and Chemical Plant Design 2011 (pp. 103–113). Berlin: Universitätsverlag der TU Berlin.

  • 31. Wójtowicz R. Lipin A.A. & Talaga J. (2014). On the possibility of using of different turbulence models for modeling flow hydrodynamics and power consumption in mixing vessels with turbine impellers. Theor. Found. Chem. Eng. 48 (4) 360–375. DOI: 10.1134/S0040579514020146.

  • 32. Kamieński J. & Wójtowicz R. (2001). Drop size during dispersion of two immiscible liquids in a vibromixer. Chem. Process Eng. 22(3C) 597–602 (in Polish).

  • 33. Wójtowicz R. (2014). Choice of an optimal agitated vessel for the drawdown of floating solids. Ind. Eng. Chem. Res. 53 (36) 13989–14001. DOI: 10.1021/ie500604q 53 13989–14001.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 356 218 9
PDF Downloads 189 129 10