Determination of benzene, toluene, ethylbenzene and xylene in field and laboratory by means of cold fiber SPME equipped with thermoelectric cooler and GC/FID method

Open access

Abstract

A simple and effective cooling device based on a thermoelectric cooler was applied to cool the SPME fiber. The device was used for quantitative extraction of aromatic hydrocarbons in the air. Several factors such as coating temperature, extraction temperature and relative humidity in the laboratory setting were optimized. Comparison of the results between the cold fiber SPME (CF-SPME) and NIOSH 1501 method on standard test atmosphere indicated a satisfactory agreement. The CF-SPME and SPME method were also compared. The results revealed that CF-SPME has the most appropriate outcome for the extraction of aromatic hydrocarbons from the ambient air. The cold fiber SPME technique showed good results for several validation parameters. Under the optimized conditions, the limits of detection (LOD) and the limits of quantification (LOQ) ranged from 0.00019 to 0.00033 and 0.0006 to 0.001 ng ml−1, respectively. The intra-day relative standard deviation (RSD) showed ranging from 4.8 to 10.5%.

1. Hazrati, S., Rostami, R., Fazlzadeh, M. & Pourfarzi, F. (2016). Benzene, toluene, ethylbenzene and xylene concentrations in atmospheric ambient air of gasoline and CNG refueling stations. Air Qual Atmos Health. 9, 403–409. DOI: 10.1007/s11869-015-0349-0.

2. Elke, K., Jermann, E., Begerow, J. & Dunemann, L. (1998). Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and highresolution gas chromatography–flame ionization detection. J. Chromatogr. A. 826, 191–200. DOI: 10.1016/S0021-9673(98)00736-5.

3. Tumbiolo, S., Gal, J.F., Maria, P.C. & Zerbinati, O. (2005). SPME sampling of btex before gc/ms analysis: examples of outdoor and indoor air quality measurements in public and private sites. Ann. Chim. 95, 757–766. DOI: 10.1002/adic.200590089.

4. Lee, M.R., Chang, C.M. & Dou, J. (2007). Determination of benzene, toluene, ethylbenzene, xylenes in water at sub-ng l-1 levels by solid-phase microextraction coupled to cryo-trap gas chromatography-mass spectrometry. Chemosphere 69, 1381–1387. DOI: 10.1016/j.chemosphere.2007.05.004.

5. Hoskins, J.A. (2011). Health effects due to indoor air pollution. Survival and sustainability. (pp. 665–676). Springer, Berlin Heidelberg.

6. Tumbiolo, S., Gal, J.F., Maria, P.C. & Zerbinati, O. (2004). Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction / gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 380, 824–830. DOI: 10.1007/s00216-004-2837-1.

7. Jia, M., Koziel, J. & Pawliszyn, J. (2000). Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography. Field Anal Chem. Tech. 4, 73–84. DOI: 10.1002/1520-6521(2000)4:2/3<73::AID-FACT2>3.0.CO;2-7.

8. Koziel, J., Jia, M., Khaled, A., Noah, J. & Pawliszyn, J. (1999). Field air analysis with SPME device. Anal. Chim. Acta. 400, 153–162. DOI: 10.1016/S0003-2670(99)00614-5.

9. Koziel, J. & Pawliszyn, J. (2011). Air sampling and analysis of volatile organic compounds with solid phase microextraction. Air & Waste Manage. Assoc. 51, 173–184. DOI: 10.1080/10473289.2001.10464263.

10. Souza-Silva, É.A., Jiang, R., Rodríguez-Lafuente, A., Gionfriddo, E. & Pawliszyn, J. (2015). A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis. Trends Anal. Chem. 71, 224–235. DOI: 10.1016/j.trac.2015.04.016.

11. Zare Sakhvidi, M.J., Bahrami, A., Afkhami, A. & Rafiei, A. (2012). Development of diffusive solid phase microextraction method for sampling of epichlorohydrin in air. Int. J. Environ. Anal. Chem. 92, 1365–1377. DOI: 10.1080/03067319.2011.620704.

12. Isetun, S., Nilsson, U., Colmsjö, A. & Johansson, R. (2004). Air sampling of organophosphate triesters using SPME under non-equilibrium conditions. Anal. Bioanal. Chem. 378, 1847–1853. DOI: 10.1007/s00216-003-2489-6.

13. Gholivand, M.B., Shamsipur, M., Shamizadeh, M., Moradian, R. & Astinchap, B. (2014). Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions. Anal. Chim. Acta 822, 30–36. DOI: 10.1016/j.aca.2014.02.032.

14. Zare Sakhvidi, M.J., Bahrami, A., Ghiasvand, A., Mahjub, H. & Tuduri, L. (2012). Determination of inhalational anesthetics in Field and laboratory by SPME GC/M. Anal Lett. 45, 375–385. DOI: 10.1080/00032719.2011.644736.

15. Ezquerro, Ó., Ortiz, G., Pons, B. & Tena, M.T. (2004). Determination of benzene, toluene, ethylbenzene and xylenes in soils by multiple headspace solid-phase microextraction; J. Chromat. A. 1035, 17–22. DOI: 10.1016/j.chroma.2004.02.030.

16. Heidari, M., Bahrami, A., Ghiasvand, A., Shana, F.G., Soltanian, A. & Rafieiemam, M. (2016). Application of graphene nanoplatelets silica composite, prepared by sol–gel technology, as a novel sorbent in two microextraction techniques. J. Sep. Sci. 38, 4225–4232. DOI: 10.1002/jssc.201500975.

17. Martendal, E. & Carasek, E. (2011). A new optimization strategy for gaseous phase sampling by an internally cooled solid-phase microextraction technique. J Chromat. A. 1218, 367–372. DOI: 10.1016/j.chroma.2010.11.041.

18. Banitaba, M.H., Hosseiny Davarani, S.S. & Kazemi Movahed, S. (2014). Comparison of direct, headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly (3,4-ethylenedioxythiophene)/graphene oxide composite. J. Chromat. A.1325, 23–30. DOI: 10.1016/j.chroma.2013.11.056.

19. Zhang, Z. & Pawliszyn, J. (1995). Quantitative extraction using an internally cooled solid phase microextraction device. Anal. Chem. 67, 34–43. DOI: 10.1021/ac00097a007.

20. Martendal, E. & Carasek, E. (2011). A new approach based on a combination of direct and headspace cold-fiber solid-phase microextraction modes in the same procedure for the determination of polycyclic aromatic hydrocarbons and phthalate esters in soil samples. J. Chromat. A. 1218, 1707–1714. DOI: 10.1016/j.chroma.2011.01.074.

21. Ghiasvand, A.R., Hosseinzadeh, S. & Pawliszyn, J. (2006). New cold-fiber headspace solid-phase microextraction device for quantitative extraction of polycyclic aromatic hydrocarbons in sediment. J. Chromat. A. 1124, 35–42. DOI: 10.1016/j.chroma.2006.04.088.

22. Chen, Y. & Pawliszyn, J. (2006). Miniaturization and automation of an internally cooled coated fiber device. Anal. Chem. 78, 5222–5226. DOI: 10.1021/ac060542k.

23. Ghiasvand, A., Setkova, L. & Pawliszyn, J. (2007). Determination of flavour profile in Iranian fragrant rice samples using cold-fibre SPME–GC–TOF–MS. Flav. Fragr. 22, 377–391. DOI: 10.1002/ffj.1809.

24. Haddadi, S.H. & Pawliszyn, J. (2009). Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber. J. Chromat. A. 1216, 2783–2788. DOI: 10.1016/j.chroma.2008.09.005.

25. Haddadi, S.H., Niri, V.H. & Pawliszyn, J. (2009). Study of desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) from solid matrices using internally cooled coated fiber. Anal. Chim. Acta 652, 224–30. DOI: 10.1016/j.aca.2009.05.026.

26. Carasek, E. & Pawliszyn, J. (2006). Screening of tropical fruit volatile compounds using solid-phase microextraction (SPME) fibers and internally cooled SPME fiber. J. Agric. Food Chem. 54, 8688–8696. DOI: 10.1021/jf0613942.

27. Menezes, H.C., Paiva, M.N., Santos, R.R., Sousa, L.P., Resende, S.F., Saturnino, J.A., Paulo, B.P. & Cardeal, Z.L. (2013). A sensitive GC/MS method using cold fiber SPME to determine polycyclic aromatic hydrocarbons in spring water. Microchem. J.110, 209–214. DOI: 10.1016/j.microc.2013.03.010.

28. Ji, J., Deng, C., Shen, W. & Zhang, X. (2006). Field analysis of benzene, toluene, ethylbenzene and xylene in water by portable gas chromatography-microflame ionization detector combined with headspace solid-phase microextraction. Talanta 69, 894–899. DOI: 10.1016/j.talanta.2005.11.032.

29. Woolcock, P.J., Koziel, J., Cai, L., Johnston, P.A. & Brown, R.C. (2013). Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: Proof of concept. J. Chromat. A.1281, 1–8. DOI: 10.1016/j.chroma.2013.01.036.

30. Elke, K., Jermann, E., Begerow, J. & Dunemann, L. (1998). Determination of benzene, toluene, ethylbenzene and xylenes in indoor air at environmental levels using diffusive samplers in combination with headspace solid-phase microextraction and high-resolution gas chromatography-flame ionization detection. J. Chromat. A. 826, 191–200. DOI: 10.1016/S0021-9673(98)00736-5.

31. NIOSH. (2003). Hydrocarbons, aromatic. https://www.cdc.gov/niosh/docs/2003-154/pdfs/1501.pdf (Accessed November 7, 2014).

32. Merib, J., Nardini, G., Bianchin, J.N., Dias, A.N., Simão, V. & Carasek, E. (2013). Use of two different coating temperatures for a cold fiber headspace solid-phase microextraction system to determine the volatile profile of Brazilian medicinal herbs. J. Sep. Sci. 36, 1410–1417. DOI: 10.1002/jssc.201201148.

33. Attari, S.G., Bahrami, A., Shana, G.F. & Heidari, M. (2014). Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air. J. Environ. Health Sci. Eng. 12, 123. DOI: 10.1186/s40201-014-0123-5.

34. Koziel, J., Jia, M. & Pawliszyn, J. (2000). Air sampling with porous solid-phase microextraction fibers. Anal. Chem. 72, 5178–5186. DOI: 10.1021/ac000518l.

35. Jiang, R., Carasek, E., Risticevic, S., Cudjoe, E., Warren, J. & Pawliszyn, J. (2012). Evaluation of a completely automated cold fiber device using compounds with varying volatility and polarity. Anal. Chim. Acta. 742, 22–29. DOI: 10.1016/j.aca.2012.01.010.

36. EURACHEM Guide. (2014). The fitness for perpose of analytical methods. http://www.eurachem.org/index.php/publications/guides/mv. (Accessed November 10, 2014).

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 566 566 32
PDF Downloads 183 183 5