A new geometrical model for mixing of highly viscous fluids by combining two-blade and helical screw agitators

Open access

Abstract

Mixing processes are becoming today a huge concern for industrialists in various domains like the pharmaceutical production, oil refining, food industry and manufacture of cosmetic products especially when the processes are related to the mixing of highly viscous products. So the choice of a stirring system for this category of products or fluids must be rigorously examined before use because of the flows which are laminar in the most cases, something that is not good to obtain homogeneous particles or suspensions after the mixing operation. This CFD study allows developing a new geometrical model of mechanical agitator with high performance for mixing of highly viscous fluids. It consists of a combination of two bladed and helical screw agitators. The investigations of the flow structure generated in the vessel are made by using the computer code ANSYS CFX (version 13.0), which allows us to realize and test the effectiveness of the new stirrer on the resulting mixture and power consumption.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bertrand J. & Couderc J.P. (1982). Agitation of pseudoplasticfluids by two blade impeller. Can. J. Chem. Eng. 60 738–747. DOI: 10.1002/cjce.5450600604. [in French].

  • 2. Bouzit M. Benali L. Hachemi M. & Bouzit F. (2006). CFD simulation of 3D velocity profile of paddle agitator and two blade impeller in stirred vessel with a highly viscous Newtonian fluid. J. Appl. Sci. 6(13) 2733–2740. DOI: 10.3923/jas.2006.2733.2740.

  • 3. Simons T.A.H. Bensmann S. Zigan S. Feise H.J. Zetzener H. & Kwade A. (2016). Characterization of granular mixing in a helical ribbon blade blender. Pow. Technol. 293 15–25. DOI: 10.1016/j.powtec.2015.11.041.

  • 4. Ixchel Gijon-Arreortùa. & Tecante A. (2015). Mixing time and power consumption during blending of cohesive food powders with a horizontal helical double-ribbon impeller. J. Food. Eng. 149 144–152. DOI: 10.1016/j.jfoodeng.2014.10.013.

  • 5. Ameur H. (2015). Energy efficiency of different impellers in stirred tank reactors. Energy 93 1980–1988. DOI: 10.1016/j.energy.2015.10.084.

  • 6. Ameur H. (2016). Effect of some parameters on the performance of anchor impellers for stirring shear-thinning fluids in a cylindrical vessel. J. Hydrodyn. 28(4) 669–675. DOI: 10.1016/S1001-6058(16)60671-6.

  • 7. Ameur H. Kamla Y. Hadjeb A. Arab I.M. & Sahel D. (2016). Data on mixing of viscous fluid by helical screw impellers in cylindrical vessels. J. Data Brief. 8 220–224. DOI: 10.1016/j.dib.2016.05.036.

  • 8. Havlica J. Jirounkova K. Travnickova T. & Kohout M. (2015). The effect of rotational speed on granular flow in a vertical bladed mixer. Pow. Technol. 280 180–190.DOI: 10.1016/j.powtec.2015.04.035.

  • 9. Ameur H. & Bouzit M. (2013). Power consumption for stirring shear thinning fluids by two-blade impeller. J. Energy 50 326–332. DOI: 10.1016/j.energy.2012.11.016.

  • 10. Driss Z. Karray S. Kchaou H. & Abid M.S. (2011). CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers. Cent. Eur. J. Eng. 1(4) 413–422. DOI: 10.2478/s13531-011-0034-5.

  • 11. Ameur H. Bouzit M. & Ghenaim A. (2013). Hydrodynamics in a vessel stirred by simple and double helical ribbon impellers. Cent. Eur. J. Eng. 3(1) 87–98. DOI: 10.2478/s13531-012-0045-x.

  • 12. Galindo R.S. Heniche M. Ascanio G. & Tanguy P.A. (2011). CFD investigation of new helical ribbon mixers bottom shapes to improve pumping Asia. Pac. J. Chem. Eng. 6 181–193. DOI: 10.1002/apj.537.

  • 13. Rahimi M. Kakekhani A. & Alsairafi A.A. (2010). Experimental and computational fluid dynamic (CFD) studies on mixing characteristics of a modified helical ribbon impeller. Korean J. Chem. Eng. 27(4) 1150–1158. DOI: 10.1007/s11814-010-0222-7.

  • 14. Jahangiri M. (2008). Shear rates in mixing of viscoelastic fluids by helical ribbon impeller. Iran. Polym. J. 17 (11) 831–841.

  • 15. Minge Z. Lühong Z. Bin J. Yuguo Y. & Xingang L. (2008). Calculation of Metzner profile of paddle agitator and two blade impeller in stirred vessel with a highly viscous Newtonian fluid. J. Appl. Sci. 6(13) 2733–2740. DOI: 10.3923/jas.2006.2733.2740.

  • 16. Delaplace G. Guerin R. Leuliet J.C. & Chhabra R.P. (2006). An analytical model for the prediction of power consumption for shear-thinning fluids with helical ribbon and helical screw ribbon impellers. Chem. Eng. Sci. J. 61 3250–3259. DOI:10.1016/j.ces.2005.11.069.

  • 17. Iranshahi A. Heniche M. Bertrand F. & Tanguy P.A. (2006). Numerical investigation of the mixing efficiency of the Ekato Paravisc impeller. Chem. Eng. Sci. 61 2609–2617. DOI: 10.1016/j.ces.2005.11.032.

  • 18. Anne Archard D. Marouche M. & Boisson H.C. (2006). Hydrodynamics and Metzner-Otto correlation in stirred vessels for yield stress fluids. Chem. Eng. J. 125 15–24. DOI: 10.1016/j.cej.2006.08.002.

  • 19. Angust R. & Kraume M. (2006). Experimental investigations of stirred solid/liquid systems in three different scales: particle distributions and power consumption. Chem. Eng. Sci. 61 2864–2870. DOI: 10.1016/j.ces.2005.11.046.

  • 20. Deplace G. Bouvier L. Moreau A. Guérin R. & Leuliet J.C. (2004). Determination of mixing time by colorimetric diagnosis – Application to a new mixing system. Exp. Fluids. J. 36 437–443. DOI: 10.1007/s00348-003-0741-7.

  • 21. Dieulot J.Y. Deplace G. Guerin R. Brienne J.P. & Leuliet J.C. (2002). Laminar mixing performances of a stirred tank equipped with helical ribbon agitator subjected to steady and unsteady rotational speed. Trans. IChemE. J. 80(4) 335–344. DOI: 10.1205/026387602317446371.

  • 22. Yao W. Mishima M. & Takahashi K. (2001). Numerical investigation on dispersive mixing characteristics of Maxblend and double helical ribbons. Chem. Eng. J. 84 565–571. DOI: 10.1016/S1385-8947(01)00135-8.

  • 23. Deplace G. Torrez C. Leuliet J.C. Belaubre N. & Andre C. (2001). Experimental and CFD simulation of heat transfer to highly viscous fluids in an agitated vessel equipped with an nonstandard helical ribbon impeller. Trans. IChemE. 79(8) 927–937. DOI: 10.1205/02638760152721460.

  • 24. Rai C.L. Devotta I. & Rao P.G. (2000). Heat transfer to viscous Newtonian and non-Newtonian fluids using helical ribbon agitator. Chem. Eng. J. 79 73–77. DOI: 10.1016/S1385-8947(00)00169-8.

  • 25. Kaneko Y. Shiojima T. & Horio M. (2000). Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation. Pow. Technol. 108 55–64. DOI: 10.1016/S0032-5910(99)00251-X.

  • 26. Bertrand F. Tanguy P.A. Brito De la Fuente E. & Carreau P. (1999). Numerical modeling of the mixing flow of second-order fluids with helical ribbon impellers. Comput. Methods. Appl. Mech. Eng. 180 267–280. DOI: 10.1016/S0045-7825(99)00169-3.

  • 27. Espinosa-Solares T. Brito-De La Fuente E. Tecante A. & Tanguy P.A. (1997). Power consumption of a dual turbinehelical ribbon impeller mixer in ungassed conditions. Chem. Eng. J. 67 215–219. DOI: 10.1016/S1385-8947(97)00040-5.

  • 28. Brito-De La Fuente E. Choplin L. & Tanguy P.A. (1997). Mixing with helical ribbon impellers: effect of highly shear thinning behaviour and impeller geometry. Trans. IChemE. 75(1) 45–52. DOI: 10.1205/026387697523381.

  • 29. Tanguy P.A. Thibault F. Brito-De La Fuente E. Espinosa-Solares T. & Tecante A. (1997). Mixing performance induced by coaxial flat blade-helical ribbon impellers rotating at different speeds. Chem. Eng. Sci. 52 1733–1741. DOI: 10.1016/S0009-2509(97)00008-0.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 376 168 5
PDF Downloads 245 163 8