Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide

Open access

Abstract

In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pang F.M. Teng S.P. Teng T.T. & Mohd Omar A.K. (2009). Heavy Metals Removal by Hydroxide Precipitation and Coagulation-Flocculation Methods from Aqueous Solutions. Water Qual. Res. J. Can. 44(2) 174–182.

  • 2. Amuda O. Amoo I. Ipinmoroti K. & Ajayi O. (2006). Coagulation/flocculation process in the removal of trace metals present in industrial wastewater. J. Appl. Sci. Environ. Mgt. 10 (3) 159–162. http://dx.doi.org/10.4314/jasem.v10i3.17339

  • 3. Vaaramaa K. & Lehto J. (2003). Removal of metals and anions from drinking water by ion exchange. Desalination 155 157–170. DOI: 10.1016/S0011-9164(03)00293-5.

  • 4. Blocher C. Dorda J. Mavrov V. Chmiel H. Lazaridis N.K. & Matis K.A. (2003). Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater. Water Res. 37 4018–4026. http://dx.doi.org/10.1016/S0043-1354(03)00314-2

  • 5. da Silva J.R.P. Mercon F. Costa C.M.G. & Benjo D.R. (2016). Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater. Desalin. Water Treat. 57(41) 19466–19474. http://dx.doi.org/10.1080/19443994.2015.1100554

  • 6. Bertazzoli R. Widner R.C. Lanza M.R.V. Di Iglia R.A. & Sousa M.F.B. (1997). Electrolytic Removal of Metals Using a Flow-Through Cell with a Reticulated Vitreous Carbon Cathode. J. Braz. Chem. Soc. 8(5) 487–493. http://dx.doi.org/10.1590/S0103-50531997000500009

  • 7. Laus R. Costa T.G. Szpoganicz B. & Favere V.T. (2010). Adsorption and desorption of Cu(II) Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J. Hazard. Mater. 183 233–241. http://dx.doi.org/10.1016/j.jhazmat.2010.07.016

  • 8. Prabakaran R. & Arivoli S. (2012). Adsorption kinetics equilibrium and thermodynamic studies of Nickel adsorption onto Thespesia Populnea bark as biosorbent from aqueous solutions. Euro. J. Appl. Eng. Sci. Res. 1(4) 134–142.

  • 9. Hasar H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. B97 49–57. DOI: 10.1016/s0304-3894(02)00237-6.

  • 10. Ravichandran T. & Arivoli S. (2013). Adsorption of Fe (III) Ions by Activated Calcite Powder-Equilibrium Kinetic and Thermodynamics Studies. J. Pharm. Biomed. Res. 2(1) 52–59.

  • 11. Yang S. Li J. Shao D. Hu J. & Wang X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time pH foreign ions and PAA. J. Hazard. Mater. 166 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.

  • 12. Otun J.A. Oke I.A. Olarinoye N.O. Adie D.B. & Okuofu C.A. (2006). Adsorption isotherms of Pb(II) Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11) 2368–2376. DOI: 10.3923/jas.2006.2368.2376.

  • 13. Rao M. Parwate A.V. & Bhole A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22 821–830. http://dx.doi.org/10.1016/S0956-053X(02)00011-9

  • 14. Fiol N. Villaescusa I. Martinez M. Miralles N. Poch J. & Serarols J. (2006). Sorption of Pb(II) Ni(II) Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50 132–140. DOI: 10.1016/j.seppur.2005.11.016.

  • 15. Öztaş N.A. Karabakan A. & Topal Ö. (2008). Removal of Fe(III) ion from aqueous solution by adsorption on raw and treated clinoptilolite samples. Micropor. Mesopor. Mat. 111 200–205. DOI: 10.1016/j.micromeso.2007.07.030.

  • 16. Hashemian S. Hosseini S.H. Salehifar H. & Salari K. (2013). Adsorption of Fe(III) from Aqueous Solution by Linde Type-A Zeolite. Am. J. Anal. Chem. 4 123–126. http://dx.doi.org/10.4236/ajac.2013.47A017

  • 17. Bhattacharyya K.G. & Gupta S.S. (2006). Adsorption of Fe(III) from water by natural and acid activated clays: Studies on equilibrium isotherm kinetics and thermodynamics of interactions. Adsorption 12 185–204. DOI: 10.1007/s10450-006-0145-0.

  • 18. Li Y. Hu X. Ren B. & Wang Z. (2016). Removal of High-Concentration Fe(III) by Oxidized Multiwall Carbon Nanotubes in a Fixed Bed Column. Am. Chem. Sci. J. 10(3) 1–9. DOI: 10.9734/ACSJ/2016/21692.

  • 19. Marcano D.C. Kosynkin D.V. Berlin J.M. Sinitskii A. Sun Z. Slesarev A. Alemany L.B. Lu W. & Tour J.M. (2010). Improved synthesis of graphene oxide. ACS Nano 4 4806–4814. DOI: 10.1021/nn1006368.

  • 20. Sykuła-Zając A. Turek M. Mathew M.P. Patai F. Horvat M. & Jabłońska J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Sci. Bull. Tech. Univ. Lodz. Food Chem. Biotechnol. 74(1081) 5–11.

  • 21. ISO 6332:1988. Water quality. Determination of iron. Spectrometric method using 110-phenanthroline.

  • 22. Estévez-Martínez Y. Velasco-Santos C. Martínez-Hernández A.L. Delgado G. Cuevas-Yáńez E. Alaníz-Lumbreras D. Duron-Torres S. & Castańo V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J. Nanomater. 2013 1–9. http://dx.doi.org/10.1155/2013/702157

  • 23. Chen J. Chen Q. Ma Q. Li Y. & Zhu Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd-Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356 114–120. DOI: 10.1016/j.molcata.2011.12.032.

  • 24. Kyzas G.Z. Travlou N.A. Kalogirou O. & Deliyanni E.A. (2013). Magnetic Graphene Oxide: Effect of Preparation Route on Reactive Black 5 Adsorption. Materials 6 1360–1376. DOI: 10.3390/ma6041360.

  • 25. Chen J. Zhu Z.H. Ma Q. Li L. Rudolph V. & Lu G.Q. (2009). Effects of pretreatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal. Today 148 97–102. DOI: 10.1016/j.cattod.2009.02.005.

  • 26. Li Y. Du Q. Liu T. Peng X. Wang J. Sun J. Wang Y. Wu S. Wang Z. Xiaa Y. & Xia L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon graphene oxide and carbon nanotubes. Chem. Eng. Res. Des. 91(2) 361–368. DOI: 10.1016/j.cherd.2012.07.007.

  • 27. Stankovich S. Dikin D.A. Piner R.D. Kohlhaas K.A. Kleinhammes A. Jia Y. Wu Y. Nguyen S.B.T. & Ruoff R.S. (2007). Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 45 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.

  • 28. Some S. Kim Y. Yoon Y. Yoo H.J. Lee S. Park Y. & Lee H. (2013). High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Sci. Rep. 3 1–5. DOI: 10.1038/srep01929.

  • 29. Couzi M. Bruneel J.-L. Talaga D. & Bokobza L. (2016). A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. Carbon 107 388–394. http://dx.doi.org/10.1016/j.carbon.2016.06.017

  • 30. Kudin K.N. Ozbas B. Schniepp H.C. Prud’homme R.K. Aksay I.A. & Car R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1) 36–41. DOI: 10.1021/nl071822y.

  • 31. Iqbal M.W. Singh A.K. Iqbal M.Z. & Eom J. (2012). Raman fingerprint of doping due to metal adsorbates on graphene. J. Phys. Condens. Matter. 24 335301–335307. DOI: 10.1088/0953-8984/24/33/335301.

  • 32. Lottermoser B.G. (2010). Mine Wastes. Characterization Treatment and Environmental Impacts. Springer-Verlag London New York.

  • 33. Vasu A.E. (2008). Adsorption of Ni(II) Cu(II) and Fe(III) from Aqueous Solutions Using Activated Carbon. E-J. Chem. 5(1) 1–9. http://dx.doi.org/10.1155/2008/690241

  • 34. Benaisa S. El Mail R. & Jbari N. (2016). Biosorption of Fe (III) from aqueous solution using brown algae Sargassum Vulgare. J. Mater. Environ. Sci. 7(5) 1461–1468.

  • 35. Chairat M. Rattanaphani S. Bremner J.B. & Rattanaphani V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76 435–439. DOI: 10.1016/j.dyepig.2006.09.008.

  • 36. Kumar P.S. & Kirthika K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4) 351–363.

  • 37. Thamilarasu P. Sivakumar P. & Karunakaran K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5) 414–420.

  • 38. Wan Ngah W.S. Ab Ghani S. & Kamari A. (2005). Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technol. 96 443–450. DOI: 10.1016/j.biortech.2004.05.022.

  • 39. Deka L. & Bhattacharyya K.G. (2015). Batch adsorption studies for iron(III) removal from aqueous solution by sand and charcoal mixture. J. Appl. Fund. Sci. 1(1) 74–80.

  • 40. Taman R. Ossman M.E. Mansour M.S. & Farag H.A. (2015). Metal Oxide Nano-particles as an Adsorbent for Removal of Heavy Metals. J. Adv. Chem. Eng. 5(3) 1–8. http://dx.doi.org/10.4172/2090-4568.1000125

  • 41. Langmuir I. (1918). The adsorption of gases on plane surfaces of glass mica and platinum. J. Am. Chem. Soc. 40 1361–1403.

  • 42. Freundlich H. (1906). Concerning adsorption in solutions. Zeitschrift fur Physikalische Chemie 57 385–470.

  • 43. Chen C. Hu J. Shao D. Li J. & Wang X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.

  • 44. Kapoor A. & Viraragavan T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61 221–227. http://dx.doi.org/10.1016/S0960-8524(97)00055-2

  • 45. Gao Z. Bandosz T.J. Zhao Z. Han M. & Qiu J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.

  • 46. Suemitsu R. Uenishi R. Akashi I. & Kakano M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31 75–83. DOI: 10.1002/app.1986.070310108.

  • 47. Al-Rub F.A.A. Kandah M. & Aldabaibeh N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2 111–116. DOI: 10.1002/1618-2863(200204).

  • 48. Padmavathy V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic thermodynamic and desorption studies. Bioresour. Technol. 99 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.

  • 49. Ho Y.S. Wase D.A.J. & Forster C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29 1327–1332. http://dx.doi.org/10.1016/0043-1354(94)00236-Z

  • 50. Ewecharoen A. Thiravetyan P. & Nakbanpote W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137 181–188. DOI: 10.1016/j.cej.2007.04.007.

  • 51. Sharma Y.C. & Srivastava V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55 1441–1442. DOI: 10.1021/je900619d.

  • 52. Meena A.K. Mishra G.K. Rai P.K. Rajgopal C. & Nagar P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.

  • 53. Johnson C.D. & Worrall F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 4 2229–2235. http://dx.doi.org/10.1016/j.watres.2007.01.047

  • 54. Kinhikar V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6) 6–11.

  • 55. Yueming Ren N.Y. (2011). Graphene/δ-MnO2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175 1–7. http://dx.doi.org/10.1016/j.cej.2010.08.010

  • 56. Jha V.K. Matsuda M. & Miyake M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+ Cu2+ Cd2+ and Pb2+. J. Hazard. Mater. 160 148–153. http://dx.doi.org/10.1016/j.jhazmat.2008.02.107

  • 57. Zhang X. & Wang X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10(2) 1–21. http://dx.doi.org/10.1371/journal.pone.0117077

  • 58. Quintelas C. Rocha Z. Silva B. Fonseca B. Figueiredo H. & Tavares T. (2009). Removal of Cd(II) Cr(VI) Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin. Chem. Eng. J. 149 319–324. DOI: 10.1016/j.cej.2008.11.025.

  • 59. Karthikeyan G. & Siva Ilango S. (2008). Equilibrium Sorption studies of Fe Cu and Co ions in aqueous medium using activated Carbon prepared from Recinius Communis Linn. J. Appl. Sci. Environ. Manage. 12(2) 81–87. http://dx.doi.org/10.4314/jasem.v12i2.55537

  • 60. Ahalya N. Kanamadi R.D. & Ramachandra T.V. (2007). Cr (VI) and Fe (III) removal using Cajanus cajan husk. J. Environ. Biol. 28(4) 765–769.

  • 61. Dai J. Ren F.L. & Tao C.Y. (2012). Adsorption Behavior of Fe(II) and Fe(III) Ions on Thiourea Cross-Linked Chitosan with Fe(III) as Template. Molecules 17 4388–4399. DOI: 10.3390/molecules17044388.

  • 62. Sankar K.R. Venkatraman B.R. & Arivoli S. (2013). Equilibrium and Thermodynamics Studies on the Removal of Iron (III) onto Plaster of Paris. Int. J. Eng. Innov. Res. 2(1) 28–33.

  • 63. Moradi O. Zare K. & Yari M. (2011). Interaction of some heavy metal ions with single walled carbon nanotube. Int. J. Nano. Dim. 1(3) 203–220.

  • 64. Salam M.A. Makki M.S.I. & Abdelaal M.Y.A. (2011). Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J. Alloys Compd. 509 2582–2587. DOI: 10.1016/j.jallcom.2010.11.094.

  • 65. Unlu N. & Ersoz M. (2007). Removal of heavy metal ions by using dithiocarbamated-sporopollenin. Sep. Purif. Technol. 52 461–469. DOI: 10.1016/j.seppur.2006.05.026.

  • 66. Abdus-Salam N. & Bello M.O. (2015). Kinetics thermodynamics and competitive adsorption of lead and zinc ions onto termite mound. Int. J. Environ. Sci. Technol. 12 3417–3426. DOI: 10.1007/s13762-015-0769-2.

  • 67. Salam M.A. (2013). Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 10 677–688. DOI: 10.1007/s13762-012-0127-6.

  • 68. Kara M. Yuzer H. Sabah E. & Celik M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37 224–232. http://dx.doi.org/10.1016/S0043-1354(02)00265-8

  • 69. Jaycock M.J. & Parfitt G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd. Onichester.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 641 345 6
PDF Downloads 284 148 3