Effects of preparation methods of mixed calcium and zinc thermal stabilizers derived from dimer fatty acid and tung-oil based C22 triacid on properties of PVC

Open access

Abstract

Calcium and zinc salts of dimer fatty acids (DFA-Ca and DFA-Zn) were synthesized using direct neutralization and metathesis technologies, respectively. The adduct of maleic anhydride and methyl eleostearate (MAME) was also converted to the corresponding zinc soap (C22TA-Zn) and calcium soap (C22TA-Ca) by the two different synthetic routes. Mixed Ca/Zn salts between DFA-Ca and DFA-Zn, and between C22TA-Zn and C22TA-Ca were used as thermal stabilizers for poly(vinyl chloride) (PVC). The PVC thermal stability was determined using Congo red test, discoloration test, torque rheological analysis and TGA. Dynamic mechanical properties were also tested. Results indicated that the DFA-Ca/DFA-Zn thermal stabilizer from direct neutralization technology was found to be superior to that of the metathesis product. The C22TA-Ca/C22TA-Zn thermal stabilizer from direct neutralization method had overall superior thermal stability, and displayed modulus and glass transition comparable to that of metathesis product. Direct neutralization method was more excellent and convenient than metathesis technology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Nagy T.T. Kelen T. Turcsányi B. & Tüdös F. (1980). The reinitiation mechanism of HCl catalysis in PVC degradation. Polym. Bull. 2(1) 77–82. DOI: 10.1007/BF00275557.

  • 2. Braun D. (1981). Thermal degradation of poly(vinyl chloride) in Development in polymer degradation Grassie N. Eds.; Appl. Sci. Publ.: London pp 101.

  • 3. Vrandečić N.S. Klarić I. & Roje U. (2001). Effect of Ca/Zn stabiliser on thermal degradation of poly(vinyl chloride)/chlorinated polyethylene blends. Polym. Degrad. Stab. 74(2) 203–212. http://dx.doi.org/10.1016/S0141-3910(01)00013-1.

  • 4. Benavides R. Castillo B.M. Castañeda A.O. López G.M. & Arias G. (2001). Different thermo-oxidative degradation routes in poly(vinyl chloride). Polym. Degrad. Stab. 73(1) 417–423. http://dx.doi.org/10.1016/S0141-3910(01)00122-7

  • 5. Benaniba M.T. Belhaneche-Bensemra N. & Gelbard G. (2003). Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates. Polym. Degrad. Stab. 82(2) 245–249. http://dx.doi.org/10.1016/S0141-3910(03)00178-2

  • 6. Lin Y.J. Wang J.R. Evans D.G. & Li D.Q. (2006). Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin. J. Phys. Chem. Sol. 67(5–6) 998–1001. http://dx.doi.org/10.1016/j.jpcs.2006.01.016

  • 7. Bao Y. Huang Z. Li S. & Weng Z. (2008). Thermal stability smoke emission and mechanical properties of poly-(vinyl chloride)/hydrotalcite nanocomposites. Polym. Degrad. Stab. 93(2) 448–455. http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.014

  • 8. Naqvi M.K. Unnikrishnan P.A. Sharma Y.N. & Bhardwaj I.S. (1984). Effect of calcium and zinc carboxylates on the thermal stabilisation of PVC. Eur. Polym. J. 20(1) 95–98. DOI: 10.1016/0014-3057(84)90231-3.

  • 9. Gökçel H.I. Balköse D. & Köktürk U. (1999). Effects of mixed metal stearates on thermal stability of rigid PVC. Eur. Polym. J. 35(8) 1501–1508. http://dx.doi.org/10.1016/S0014-3057(98)00217-1

  • 10. Farone E.V. Labovitz B.P. & Kruse N.A. (2013). Process for preparing liquid overbased metal carboxylates mixed metal stabilizers containing same and stabilized halogen-containing polymers therewith. U.S. Patent 2013137806(A1).

  • 11. Fang L. Song Y.H. Zhu X.N. & Zheng Q. (2009). Influence of lanthanum stearate as a co-stabilizer on stabilization efficiency of calcium/zinc stabilizers to polyvinyl chloride. Polym. Degrad. Stab. 94(5) 845–850. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.024

  • 12. Razvan C. Beck R. Kurzinger A. Purzer A.W. & Rosentha M. (1991). Basic calcium-aluminium-hydroxy phosphites process for their manufacture and use. D.E. Patent 3941902 Cl.

  • 13. Wang M. Xu J.Y. Wu H. & Guo S.Y. (2006). Effect of pentaerythrito l and organic tin with calcium/zinc stearates on the stabilization of poly(vinyl chloride). Polym. Degrad. Stab. 91(9) 2101–2109. http://dx.doi.org/10.1016/j.polymdegradstab.2006.01.011

  • 14. Kalouskova R. Novotna M. & Vymazal Z. (2004). Investigation of thermal stabilization of poly(vinyl chloride) by lead stearate and its combination with synthetic hydrotalcite. Polym. Degrad. Stab. 85(2) 903–909. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.008

  • 15. Edenbaum J. (1992). Plastics additives and modifiers handbook in Mixed-metal stabilizers for polyvinyl chloride; Verbiar L. Eds.;. Van Nostrand Reinhold Compary: New York pp 272–296.

  • 16. Folarin O.M. & Sadiku E.R. (2011). Thermal stabilizers for poly(vinyl chloride): A review. Int. J. Phys. Sci. 6(18) 4323–4330. http://www.academicjournals.org/IJPS

  • 17. Abbås K.B. & Sörvik E.M. (1980). Heat stabilizers for poly(vinyl chloride). I. Synergistic systems based on calcium/zinc stearate. J. Vinyl Addit. Technol. 2(2) 87–94. DOI: 10.1002/vnl.730020205.

  • 18. Manzoor W. Yousaf S.M. & Ahmad Z. (1996). Degradation of PVC: Effect o f zinc chloride on the concentration of polyenes. Polym. Degrad. Stab. 51(3) 295–299. DOI: 10.1016/0141-3910(95)00186-7.

  • 19. Balköse D. Gökçel H.I. & Göktepe S.E. (2001). Synergism of Ca/Zn soaps in poly(vinyl chloride) thermal stability. Eur. Polym. J. 37(6) 1191–1197. http://dx.doi.org/10.1016/S0014-3057(00)00233-0

  • 20. Lévai G. Ocskay G. & Nyitrai Z. (1989). Kinetics of the stabilizing effect of calcium and zinc stearates in the thermal degradation of PVC: part II. Polym. Degrad. Stab. 25(1) 61–72. DOI: 10.1016/0141-3910(89)90024-4.

  • 21. Liu Y.B. Liu W.Q. & Hou M.H. (2007). Metal dicarboxylates as thermal stabilizers for PVC. Polym. Degrad. Stab. 92(8) 1565–1571. http://dx.doi.org/10.1016/j.polymdegradstab.2007.05.003

  • 22. Ree M. Bae J.Y. Jung J.H. & Shin T.J. (1999). A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J. Polym. Sci. Part A Polym. Chem. 37(12) 1863–1876. DOI: 10.1002/(SICI)1099-0518(19990615)37:12<1863::AID-POLA16>3.0.CO;2-K.

  • 23. Wang M. Xia J. Jiang J. Li S. Huang K. Mao W. & Li M. (2016). A novel liquid Ca/Zn thermal stabilize r synthesized from tung-maleic anhydride and its effects on thermal stability and mechanical properties of PVC. Polym. Degrad. Stab. 133 136–143. http://dx.doi.org/10.1016/j.polymdegradstab.2016.08.010

  • 24. Guo Y. Zheng Y.Y. Qiu S.C. Zeng A.R. & Li B.M. (2011). Metal lanolin fatty acid as novel thermal stabilizers for rigid poly(vinyl chloride). J. Rare Earth. 29(5) 401–406. DOI: 10.1016/S1002-0721(10)60468-1.

  • 25. Wang M. Xia J. Jiang J. Li S. & Li M. (2016). Mixed calcium and zinc salts of N-(3-aminobenzoic acid)terpene-maleamic acid: preparation and its application as novel thermal stabilizer for poly(vinyl chloride). RSC Adv. 6(99) 97036–97047. DOI: 10.1039/C6RA19523G.

  • 26. Li M. Zhang J. Xin J. Huang K. Li S. Wang M. & Xia J. (2016). Design of green zinc-based thermal stabilizers derived from tung oil fatty acid and study of thermal stabilization for PVC. J. Appl. Polym. Sci. DOI: 10.1002/app.44679.

  • 27. Yoshizawa F. Kikuchi F. Kojima S. & Yuasa K. (1992). Continuous process for preparing metallic soaps. U.S. Patent 5175322.

  • 28. Pietralla N. Ausserbauer V. & Rosenthal C. (1981). Method for the production of metal soaps. U.S. Patent 4294771.

  • 29. Bensemra N. Hoang T.V. Guyot A. Gay M. & Carette L. (1989). Thermal dehydrochlorination and stabilization of poly(vinylchloride) in solution: Part IV-Synergistic effects of β-diketone compouds and metal soap stabilizers. Polym. Degrad. Stab. 24(2) 89–111. DOI: 10.1016/0141-3910(89)90105-5.

  • 30. Michel A. Hoang T.V. Perrin B. & Llauro M.F. (1981). Synergistic mechanisms of β-diketone derivatives and zinc-calcium soaps in PVC stabilisation. Polym. Degrad. Stab. 3(3) 107–119. DOI: 10.1016/0141-3910(81)90003-3.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 598 189 8
PDF Downloads 286 145 3