Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies

Open access

Abstract

Cr(VI) adsorption was studied for abundantly available low-cost lignocellulosic adsorbents in Pakistan namely, tobacco stalks (TS), white cedar stem (WCS) and eucalyptus bark (EB). Several process variables like contact time, adsorbent dose, pH, metal concentration, particle size and temperature were optimized in batch mode. EB showed high Cr(VI) adsorption of 63.66% followed by WCS 62% and TS 57% at pH 2, which is higher than most of the reported literature. Langmuir isotherm (R2 = 0.999) was well fitted into the equilibrium Cr(VI) data of EB, suggesting homogeneous active sites and monolayer coverage of Cr(VI) onto the EB surface. Freundlich (R2 = 0.9982) isotherm was better fitted to the equilibrium data of TS and WCS, revealing the adsorption sites with heterogeneous energy distribution and multilayer Cr(VI) adsorption. Moreover, the Cr(VI) adsorption of studied adsorbents followed the pseudo-second order kinetic model. Thermodynamic properties were investigated in two temperature ranges, i.e., T1 (303–313 K) and T2 (313–323 K). TS and EB showed the exothermic at T1 and endothermic reactions at T2 with entropy controlled adsorption at the solid-liquid interface, and WCS exhibited an opposite thermal trend with decreasing disorderness at solid-liquid interface as temperature rises. Gibbs free energy (ΔG>0) confirmed the non-spontaneous adsorption process for all studied adsorbents.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chowdhury M. Mostafa M. Biswas T.K. & Saha A.K. 2013. Treatment of leather industrial effluents by filtration and coagulation processes. Water Res. Ind. 3 11–22. DOI: 10.1016/j.wri.2013.05.002.

  • 2. Honnannavar S.M. & Hosamani S.R. 2014. Comparison of activated and inactivated coconut husk as an adsorbent for removal of hexavalent chromium from wastewater. J. Chem. Pharm. Res. 6 2628–2633. http://jocpr.com/vol6-iss6-2014/JCPR-2014-6-6-2628-2633.pdf

  • 3. Kerger B.D. Paustenbach D.J. Corbett G.E. & Finley B.L. 1996. Absorption and elimination of trivalent and hexavalent chromium in humans following ingestion of a bolus dose in drinking water. Toxicol. Appl. Pharm. 141 145–158. http://dx.doi.org/10.1016/S0041-008X(96)80020-2

  • 4. Gomez V. & Callao M. 2006. Chromium determination and speciation since 2000. TrAC Trends Anal. Chem. 25 1006–1015. DOI: 10.1016/j.trac.2006.06.010.

  • 5. Barrera-Díaz C.E. Lugo-Lugo V. & Bilyeu B. 2012. A review of chemical electrochemical and biological methods for aqueous Cr (VI) reduction. J. Hazard. Mater. 223 1–12. DOI: 10.1016/j.jhazmat.2012.04.054.

  • 6. Chen D. Zhang J. & Chen J. 2010. Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech. 7 235–242. DOI: 10.1007/BF03326133.

  • 7. Kennedy L.J. Vijaya J.J. & Sekaran G. 2004. Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind. Eng. Chem. Res. 43 1832–1838. DOI: 10.1021/ie034093f.

  • 8. Sivakumar D. 2013. Experimental and analytical model studies on leachate volume computation from solid waste. Int. J. Environ. Sci. Technol. 10 903–916. DOI: 10.1007/s13762-012-0083–1.

  • 9. Akbal F. & Camcı S. 2012. Treatment of metal plating wastewater by electrocoagulation. Environ. Prog. Sustain. Energy. 31 340–350. DOI: 10.1002/ep.10546.

  • 10. Kurniawan T.A. Chan G.Y.S. Lo W.H. & Babel S. 2006. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118 83–98. DOI: 10.1016/j.cej.2006.01.015.

  • 11. Mohan D. Rajput S. Singh V.K. Steele P.H. & Pittman C.U. 2011. Modeling and evaluation of chromium remediation from water using low cost bio-char a green adsorbent. J. Hazard. Mater. 188 319–333. DOI: 10.1016/j.jhazmat.2011.01.127.

  • 12. Dave P.N. Pandey N. & Thomas H. 2012. Adsorption of Cr (VI) from aqueous solutions on tea waste and coconut husk. Indian J. Chem. Technol. 19 111–117.

  • 13. Jain R.N. Patil S. & Lal D. 2014. Adsorption of Cr (VI) from aqueous environment using neem leaves powder. Int. J. Res. Eng. Tech. 3. http://esatjournals.net/ijret/2014v03/i21/IJRET20140321007.pdf

  • 14. Mutongo F. Kuipa O. & Kuipa P.K. 2014. Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinor. Chem. Appl. 2014. DOI: 10.1155/2014/973153.

  • 15. Gao H. Liu Y. Zeng G. Xu W. Li T. and Xia W. 2008. Characterization of Cr(VI) removal from aqueous solutions by a surplus agricultural waste-rice straw. J. Hazard. Mater. 150 446–452. DOI: 10.1016/j.jhazmat.2007.04.126.

  • 16. Ahmad R. Rao R.A.K. & Masood M.M. 2005. Removal and recovery of Cr (VI) from synthetic and industrial wastewater using bark of Pinus roxburghii as an adsorbent. Water Qual. Res. J. Can. 40 462–468.

  • 17. Ahalya N.K. R.D. & Ramachandra T.V. 2005. Biosorption of chromium (VI) from aqueous solutions by the husk of Bengal gram (Cicer arientinum). Electron. J. Biotech. 8 258–264. DOI: 10.2225/vol8-issue3-fulltext–10.

  • 18. Garg U.K. Kaur M. Garg V. & Sud D. 2007. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J. Hazard. Mater. 140 60–68. DOI: 10.1016/j.jhazmat.2006.06.056.

  • 19. Lu M. Guan X.H. Xu X.H. & Wei D.Z. 2013. Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chinese Chem. Lett. 24 253–256. DOI: /10.1016/j.cclet.2013.01.034

  • 20. Haroon H. Ashfaq T. Gardazi S.M.H. Sherazi T.A. Ali M. Rashid N. & Bilal M. 2016. Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors. Korean J. Chem. Eng. 33 2898–2907. DOI: 10.1007/s11814-016-0160-0.

  • 21. Park D. Lim Seong-Rin. Yun Yeoung-Sang. Park J. M. 2007. Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere 70 298–305. DOI:10.1016/j.chemosphere.2007.06.007.

  • 22. Nharingo T. Moyo M. & Mahamadi C. 2016. Kinetics and Equilibrium Studies on the Biosorption of Cr(VI) by Vigna Subterranean (L.) Verdc Hull. Int. J. Environ. Res. 10 85–96.

  • 23. Lin C. Qiao S. Luo W. Liu Y. Liu D. Li X. & Liu M. 2014. Thermodynamics Kinetics and Regeneration Studies for Adsorption of Cr (VI) from Aqueous Solutions using Modified Cellulose as Adsorbent. BioResources 9 6998–7017. DOI: 10.15376/biores.9.4.6998-7017.

  • 24. Aliabadi M. Khazaei I. Fakhraee H. & Mousavian M. 2012. Hexavalent chromium removal from aqueous solutions by using low-cost biological wastes: equilibrium and kinetic studies. Int. J. Environ. Sci. Tech. 9 319–326. DOI: 10.1007/s13762-012-0045-7.

  • 25. Tadesse B. Teju E. & Megersa N. 2015. The Teff straw: a novel low-cost adsorbent for quantitative removal of Cr (VI) from contaminated aqueous samples. Desalin. Water Treat. 56 2925–2936. DOI:10.1080/19443994.2014.968214.

  • 26. Singh V. Ram C. & Kumar. A. 2016. Physico-chemical characterization of electroplating industrial effluents of Chandigarh and Haryana Region. J. Civil. Environ. Eng. 6 2–6. DOI: 10.4172/2165-784X.1000237

  • 27. Verma S.K. Khandegar V. & Saroha Anil-K. 2013. Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste. 17 146–152. DOI: 10.1061/(ASCE)HZ.2153-5515.0000170.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 461 204 2
PDF Downloads 160 77 4