Activated carbons prepared from hazelnut shells, walnut shells and peanut shells for high CO2 adsorption

Open access

Abstract

Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN), walnut shells (WN) and peanut shells (PN). Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g) and WN900 at 25°C (4.34 mmol/g). All of the samples had a well-developed microporous structure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Xiao-Gen S. & Hui-Qiang L. (2009). Discussion on low-carbon economy and low-carbon building technology. Nat. Sci. 1 37–40. DOI: 10.4236/ns.2009.11007.

  • 2. Leung D.Y.C. Caramanna G. & Maroto-Valer M.M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39 426–443. DOI: 10.1016/j.rser.2014.07.093.

  • 3. Gong J. Michalkiewicz B. Chen X. Mijowska E. Liu J. Jiang Z. Wen X. & Tang T. (2014). Sustainable Conversion of Mixed Plastics into Porous Carbon Nanosheets with High Performances in Uptake of Carbon Dioxide and Storage of Hydrogen. ACS Sustainable Chem. Eng. 2 2837–2844. DOI: 10.1021/sc500603h.

  • 4. Wang Y.X. Liu B.S. & Zheng C. (2010). Preparation and Adsorption Properties of Corncob-Derived Activated Carbon with High Surface Area. J. Chem. Eng. 55 4669–4676. DOI: 10.1021/je1002913.

  • 5. Alves Fiuza Jr. R. Medeiros de Jesus Neto R. Bacelar Correia L. & Carvalho Andrade H.M. (2015). Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption. J. Environ. Manage. 161 198–205. DOI: 10.1016/j.jenvman.2015.06.053.

  • 6. Kapica-Kozar J. Kusiak-Nejman E. Wanag A. Kowalczyk Ł. Wrobel R.J. Mozia S. & Morawski A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202 241–249. DOI: 10.1016/j.micromeso.2014.10.013.

  • 7. Kapica-Kozar J. Piróg E. Kusiak-Nejman E. Wrobel R.J. Gęsikiewicz-Puchalska A. Morawski A.W. Narkiewicz U. & Michalkiewicz B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. DOI: 10.1039/c6nj02808j.

  • 8. Michalkiewicz B. Majewska J. Kądziołka G. Bubacz K. Mozia S. & Morawski A.W. (2014). Reduction of CO2 by adsorption and reaction on surface of TiO2-nitrogen modified photocatalyst J. CO2 Util. 5 47–52. DOI: 10.1016/j.jcou.2013.12.004.

  • 9. Romero-Hermida I. Santos A. Pérez-López R. García-Tenorio R. Esquivias L. & Morales-Flórez V. (2017). New method for carbon dioxide mineralization based on phosphogypsum and aluminium-rich industrial wastes resulting in valuable carbonated by-products. J. CO2 Util. 18 15–22. DOI: 10.1016/j.jcou.2017.01.002.

  • 10. Bradley M.J. Ananth R. Willauer H.D. Baldwin J.W. Hardy D.R. DiMascio F. & Williams F.W. (2017). The role of catalyst environment on CO2 hydrogenation in a fixed-bed reactor. J. CO2 Util. 17 1–9. DOI: 10.1016/j.jcou.2016.10.014.

  • 11. Michalkiewicz B. Sreńscek-Nazzal J. & Ziebro J. (2009). Optimization of Synthesis Gas Formation in Methane Reforming with Carbon Dioxide. Catal. Lett. 129 142–148. DOI: 10.1007/s10562-008-9797-6.

  • 12 Pakhare D. & Spivey J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43 7813–7837. DOI: 10.1039/C3CS60395D.

  • 13 Michalkiewicz B. (2004). Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5. Appl. Catal. A-Gen. 277 147–153. DOI: 10.1016/j.apcata.2004.09.005.

  • 14. Markowska A. & Michalkiewicz B. (2009). Biosynthesis of methanol from methane by Methylosinus trichosporium OB3b. Chem. Pap. 63 105–110. DOI: 10.2478/s11696-008-0100-5.

  • 15. Michalkiewicz B. (2003). Methane conversion to methanol in condensed phase. Kinet. Catal. 44 801–805. DOI: 10.1023/B:KICA.0000009057.79026.0b.

  • 16. Michalkiewicz B. Sreńscek-Nazzal J. Tabero P. Grzmil B. & Narkiewicz U. (2008). Selective methane oxidation to formaldehyde using polymorphic T M and H forms of niobium (V) oxide as catalysts. Chem. Pap. 62 106–113. DOI: 10.2478/s11696-007-0086-4.

  • 17. Michalkiewicz B. (2005). Kinetics of partial methane oxidation process over the Fe-ZSM-5 catalysts. Chem. Pap. 59 403–408. DOI: 10.1016/j.apcata.2004.09.005.

  • 18. Michalkiewicz B. Jarosinska M. & Lukasiewicz I. (2009). Kinetic study on catalytic methane esterification in oleum catalyzed by iodine. Chem. Eng. J. 154 156–161. DOI: 10.1016/j.cej.2009.03.046.

  • 19. Michalkiewicz B. & Balcer S. (2012). Bromine catalyst for the methane to methyl bisulfate reaction. Pol. J. Chem. Technol. 14 19–21. DOI: 10.2478/v10026-012-0096-z.

  • 20. Michalkiewicz B. (2011). Methane oxidation to methyl bisulfate in oleum at ambient pressure in the presence of iodine as a catalyst. Appl. Catal. A-Gen. 394 266–268. DOI: 10.1016/j.apcata.2011.01.014.

  • 21. Michalkiewicz B. Kalucki K. & Sosnicki J.G. (2003). Catalytic system containing metallic palladium in the process of methane partial oxidation. J. Catal. 215 14–19. DOI: 10.1016/S0021-9517(02)00088-X.

  • 22. Michalkiewicz B. (2006). The kinetics of homogeneous catalytic methane oxidation. Appl. Catal. A-Gen. 307 270–274. DOI: 10.1016/j.apcata.2006.04.006.

  • 23. Jarosińska M. Lubkowski K. Sośnicki J.G. & Michalkiewicz B. (2008). Application of halogens as catalysts of CH4 esterification. Catal. Lett. 126 407–412. DOI: 10.1007/s10562-008-9645-8.

  • 24. Majewska J. & Michalkiewicz B. (2014). Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5 Significance of Ni content and temperature. New Carbon Mater. 29 102–108. DOI: 10.1016/S1872-5805(14)60129-3.

  • 25. Ziebro J. Lukasiewicz I. Borowiak-Palen E. & Michalkiewicz B. (2010). Low temperature growth of carbon nanotubes from methane catalytic decomposition over nickel supported on a zeolite. Nanotechnology 21 1–6. DOI: 10.1088/0957-4484/21/14/145308.

  • 26. Ziebro J. Skorupinska B. Kadziolka G. & Michalkiewicz B. (2013). Synthesizing Multi-walled Carbon Nanotubes over a Supported-nickel Catalyst. Fuller. Nanotub. Car. N. 21 333–345. DOI: 10.1080/1536383X.2011.613543.

  • 27. Majewska J. & Michalkiewicz B. (2016). Preparation of Carbon Nanomaterials over Ni/ZSM-5 Catalyst Using Simplex Method Algorithm. Acta Phys. Pol. A 129 153–157. DOI: 10.12693/APhysPolA.129.153.

  • 28. Ziebro J. Lukasiewicz I. Grzmil B. Borowiak-Palen E. & Michalkiewicz B. (2009). Synthesis of nickel nanocapsules and carbon nanotubes via methane CVD. J. Alloy. Compd. 485 695–700. DOI: 10.1016/j.jallcom.2009.06.039.

  • 29. Majewska J. & Michalkiewicz B. (2013). Low temperature one-step synthesis of cobalt nanowires encapsulated in carbon. Appl. Phys. A-Mater. 111 1013–1016. DOI: 10.1007/s00339-013-7698-z.

  • 30. Michalkiewicz B. & Majewska J. (2014). Diameter-controlled carbon nanotubes and hydrogen production. Int. J. Hydrogen Energ. 39 4691–4697. DOI: 10.1016/j.ijhydene.2013.10.149.

  • 31. Grams J. Potrzebowska N. Goscianska J. Michalkiewicz B. & Ruppert A.M. (2016). Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas Int. J. Hydrogen Energ. 41 8656–8667. DOI: 10.1016/j.ijhydene.2015.12.146.

  • 32. Michalkiewicz B. & Koren Z.C. (2015). Zeolite membranes for hydrogen production from natural gas: state of the art. J. Porous Mat. 22 635–46. DOI: 10.1007/s10934-015-9936-6.

  • 33. Kapica-Kozar J. Piróg E. Wróbel R.J. Mozia S. Kusiak-Nejman E. Morawski A.W. Narkiewicz U. & Michalkiewicz B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231 117–127. DOI: 10.1016/j.micromeso.2016.05.024.

  • 34. Wenelska K. Michalkiewicz B. Gong J. Tang T. Kaleńczuk R. Chen X. & Mijowska E. (2013). In situ deposition of Pd nanoparticles with controllable diameters in hollow carbon spheres for hydrogen storage. Int. J. Hydrogen Energ. 38 16179–16184. DOI: 10.1016/j.ijhydene.2013.10.008.

  • 35. Wenelska K. Michalkiewicz B. Chen X. & Mijowska E. (2014). Pd nanoparticles with tunable diameter deposited on carbon nanotubes with enhanced hydrogen storage capacity Energy 75 549–554. DOI: 10.1016/j.energy.2014.08.016.

  • 36. Sreńscek-Nazzal J. Kamińska W. Michalkiewicz B. & Koren Z.C. (2013). Production characterization and methane storage potential of KOH-activated carbon from sugarcane molasses. Ind. Crop. Prod. 47 153–159. DOI: 10.1016/j.indcrop.2013.03.004.

  • 37. Alcañiz-Monge J. Lozano-Castelló D. Cazorla-Amorós D. & Linares-Solano A. (2009). Fundamentals of methane adsorption in microporous carbons. Micropor. Mesopor. Mat. 124 110–116. DOI: 10.1016/j.micromeso.2009.04.041.

  • 38. Sun Y. Liu C. Su W. Zhou Y. & Zhou L. (2009). Principles of methane adsorption and natural gas storage. Adsorption 15 133–137. DOI: 10.1007/s10450-009-9157-x.

  • 39. Sreńscek-Nazzal J. Narkiewicz U. Morawski A. Wróbel R. Gęsikiewicz-Puchalska A. & Michalkiewicz B. (2016). Modification of commercial activated carbons for CO2 adsorption. Acta Phys. Pol. A 129(3) 394–401. DOI: 10.12693/APhysPolA.129.394.

  • 40. Deng S. Wei H. Chen T. Wang B. Huang J. & Yu G. (2014). Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 253 46–54. DOI: 10.1016/j.cej.2014.04.115.

  • 41. Kwiatkowski M. Sreńscek-Nazzal J. & Michalkiewicz B. (2017) An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12 Adsorption accepted DOI: 10.1007/s10450-017-9867-4.

  • 42. Sreńscek-Nazzal J. Narkiewicz U. Morawski A.W. Wróbel R.J. & Michalkiewicz B. (2015). Comparison of Optimized Isotherm Models and Error Functions for Carbon Dioxide Adsorption on Activated Carbon. J. Chem. Eng. Data 60 3148–3158. DOI: 10.1021/acs.jced.5b00294.

  • 43. Gesikiewicz-Puchalska A. Zgrzebnicki M. & Michalkiewicz B. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309 159–171. DOI: 10.1016/j.cej.2016.10.005.

  • 44. Sreńscek-Nazzal J. & Michalkiewicz B. (2011). The simplex optimization for high porous carbons preparation. Pol. J. Chem. Tech. 13(4) 63–70. DOI: 10.2478/v10026-011-0051-4.

  • 45 Savova D. Apak E. Ekinci E. Yardim F. Petrov N. Budinova T. Razvigorova M. & Minkova V. (2001). Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg. 21 133–142. DOI: 10.1016/S0961-9534(01)00027-7.

  • 46. Sun Y. & Webley P.A. (2011). Preparation of Activated Carbons with Large Specific Surface Areas from Biomass Corncob and Their Adsorption Equilibrium for Methane Carbon Dioxide Nitrogen and Hydrogen. Ind. Eng. Chem. Res. 50 9286–9294. DOI: 10.1021/ie1024003.

  • 47. Kapica J. Pełech R. Przepiórski J. & Morawski A.W. (2002). Kinetics of the Adsorption of copper and lead ions from aqueous solution on to WD-ekstra activated carbon. Adsorpt. Sci. Technol. 20 441–452. DOI: 10.1260/026361702320644734.

  • 48. Przepiórski J. Czyżewski A. Kapica J. Moszyński D. Grzmil B. Tryba B. Mozia S. & Morawski A.W. (2012). Low temperature removal of SO2 traces from air by MgO-loaded porous carbons. Chem. Eng. J. 191 147–153. DOI: 10.1016/j.cej.2012.02.087.

  • 49. Czyżewski A. Kapica J. Moszyński D. Pietrzak R. Przepiórski J. (2013). On competitive uptake of SO2 and CO2 from air by porous carbon containing CaO and MgO. Chem. Eng. J. 226 348–356. DOI: 10.1016/j.cej.2013.04.061

  • 50. Wróblewska A. & Makuch E. (2014). Regeneration of the Ti-SBA-15 Catalyst Used in the Process of Allyl Alcohol Epoxidation with Hydrogen Peroxide. J. Adv. Oxid. Technol. 17(1) 44–52. DOI: 10.1515/jaots-2014-0106.

  • 51. Wróblewska A. (2014). The Epoxidation of Limonene over the TS-1 and Ti-SBA-15 Catalysts. Molecules 19 19907–19922. DOI: 10.3390/molecules191219907.

  • 52. Wróblewska A. Ławro E. & Milchert E. (2006). Technological Parameter Optimization for Epoxidation of Methallyl Alcohol by Hydrogen Peroxide over TS-1 Catalyst. Ind. Eng. Chem. Res. 45 7365–7373. DOI: 10.1021/ie0514556.

  • 53. Wróblewska A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal. A-Gen. 309 192–200. DOI: 10.1016/j.apcata.2006.05.004.

  • 54. Chen Y. Zhu Y. Wang Z. Li Y. Wang L. Ding L. Gao X. Ma Y. & Guo Y. (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Coll. Int. Sci. 163 39–52. DOI: 10.1016/j.cis.2011.01.006.

  • 55. Młodzik J. Wróblewska A. Makuch E. Wróbel R.J. & Michalkiewicz B. (2016). Fe/EuroPh catalysts for limonene oxidation to 12-epoxylimonene its diol carveol carvone and perillyl alcohol. Catal. Today 268 111–120. DOI: 10.1016/j.cattod.2015.11.010.

  • 56. Wróblewska A. Makuch E. Młodzik J. Koren Z. & Michalkiewicz B. (2016). Fe/Nanoporous Carbon Catalysts Obtained from Molasses for the Limonene Oxidation Process. Catal. Lett. DOI: 10.1007/s10562-016-1910-7.

  • 57. Wróblewska A. Makuch E. Młodzik J. & Michalkiewicz B. (2016). Fe-carbon nanoreactors obtained from molasses as efficient catalysts for limonene oxidation. Green Process. Synth. DOI: 10.1515/gps-2016-0148

  • 58. Adib Yahya M. Al-Qodah Z. & Zanariah Ngah C.W. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev. 46 218–235. DOI: 10.1016/j.rser.2015.02.051.

  • 59. Rashidi N.A. Yusup S. & Borhan A. (2014). Development of Novel Low-Cost Activated Carbon for Carbon Dioxide Capture. Int. J. Chem. Eng. Appl. 5(29) 90–94. DOI: 10.7763/IJCEA.2014.V5.357.

  • 60. Aygun A. Yenisoy-Karakas S. & Duman I. (2003). Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical chemical and adsorption properties. Micropor. Mesopor. Mat. 66 189–195. DOI: 10.1016/j.micromeso.2003.08.028.

  • 61. Glonek K. Sreńscek-Nazzal J. Narkiewicz U. Morawski A. Wróbel R. & Michalkiewicz B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta. Phys. Pol. A 129(1) 158–161. DOI: 10.12693/APhysPolA.129.158.

  • 62. Młodzik J. Sreńscek-Nazzal J. Narkiewicz U. Morawski A. Wróbel R. & Michalkiewicz B. (2016). Activated carbons from molasses as CO2 sorbents. Acta. Phys. Pol. A 129(3) 402–404. DOI: 10.1269/APhysPolA.129.402.

  • 63. Serafin J. Narkiewicz U. Morawski A.W. Wróbel R.J. & Michalkiewicz B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Utilization.

  • 64. Deng S. Hu B. Chen T. Wang B. Huang J. Wang Y. & Yu G. (2015). Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption 21 125–133. DOI 10.1007/s10450-015-9655-y.

  • 65. Kwiatkowski M. Fierro V. & Celzard A. (2017). Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Coll. Int. Sci. 486 277–286. DOI: 10.1016/j.jcis.2016.10.003.

  • 66. Kwiatkowski M. & Broniek E. (2013). Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. J. Coll. Int. Sci. 427 47–52. DOI: 10.1016/j.colsurfa.2013.03.002.

  • 67. Kwiatkowski M. & Broniek E. (2012). Application of the LBET class adsorption models to analyze influence of production process conditions on the obtained microporous structure of activated carbons. Coll. Surf. A. 411 105–110. DOI: 10.1016/j.colsurfa.2012.06.046.

  • 68. Rechnia P. Malaika A. Najder-Kozdrowska L. & Kozłowski M. (2012). The effect of ethanol on carbon-catalysed decomposition of methane. Int. J. Hydrogen Energy 37 7512–7520. DOI: 10.1016/j.ijhydene.2012.02.014.

  • 69. Sayan E. (2006). Ultrasound-assisted preparation of activated carbon from alkaline impregnated hazelnut shell: An optimization study on removal of from aqueous solution. Chem. Eng. J. 115 213–218. DOI: 10.1016/j.cej.2005.09.024.

  • 70. Unur E. (2013). Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Micropor. Mesopor. Mat. 168 92–101. DOI: 10.1016/j.micromeso.2012.09.027.

  • 71. Gonzalez J.F. Roman S. Gonzalez-Garcia C.M. Valente Nabais J.M. & Ortiz A.L. (2009). Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation. Ind. Eng. Chem. Res. 48 7474–7481. DOI: 10.1021/ie801848x.

  • 72. Li D. Tian Y. Li L. Li J. & Zhang H. (2015). Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous. Mater. 22 1581–1588. DOI: 10.1007/s10934-015-0041-7.

  • 73. David E. & Kopac J. (2014). Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J. Anal. Appl. Pyrol. 110 322–332. DOI: 10.1016/j.jaap.2014.09.021.

  • 74. Rashidi A.M. Kazemi D. Izadi N. Pourkhalil M. Jorsaraei A. Ganji E. & Lotfi R. (2016). Preparation of nanoporous activated carbon and its application as nano adsorbent for CO2 storage. Korean J. Chem. Eng. 33(2) 616–622. DOI: 10.1007/s11814-015-0149-0.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 743 456 15
PDF Downloads 350 226 5