Preliminary study on the influence of UV-C irradiation on microorganism viability and polyphenol compounds content during winemaking of ‘Regent’ red grape cultivar

Open access


In this study, UV-C light was tested as an alternative method to inactivate microorganisms in the must of ‘Regent’ red grape cultivar. The control sample containing the microorganism diluted in a physiological NaCl solution was prepared to take into consideration different conditions of liquids, such as turbidity and colour. Additionally, the changes in the composition of polyphenol compounds in the ‘Regent’ must after UV-C exposure were evaluated. The viability of yeasts (Saccharomyces cerevisiae) and bacteria (Oenococcus oeni) significantly decreased with time; however, the highest decline was noted after the first hour of exposure. The polyphenol compound content was significantly lower after UV-C treatment and this was mainly the result of anthocyanin decomposition. The total content of flavan-3-ols and hydroxycinnamic acids and derivatives increased after irradiation.


  • 1. Santos, M.C., Nunes, C., Saraiva, J.A. & Coimbra, M.A. (2012). Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. Eur. Food. Res. Technol. 234, 1–12. DOI: 10.1007/s00217-011-1614-6.

  • 2. Machado, R.M.D., Toledo, M.C.F. & Vicente, E. (2009). Sulphite content in some Brazilian wines: analytical determination and estimate of dietary exposure. Eur. Food. Res. Technol. 229(3), 383–389. DOI: 10.1007/s00217-009-1071-7.

  • 3. Rizzotti, L., Levav, N., Fracchetti, F., Felis, G.E. & Torriani, S. (2015). Effect of UV-C treatment on the microbial population of white and red wines, as revealed by conventional plating and PMA-qPCR methods. Food Control. 47, 407–412. DOI: 10.1016/j.foodcont.2014.07.052.

  • 4. Du Toit, M. & Pretorius, I.S. (2000). Microbial spoilage and preservation of wine: using weapons from nature’s own arsenal–a review. S. Afr. J. Enol. Vitic. 21, 74–96.

  • 5. Fredericks, I.N., Du Toit, M. & Krügel, M. (2011). Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 28(3), 510–517. DOI: 10.1016/

  • 6. Salaha, M.I., Kallithraka, S., Marmaras, I., Koussissi, E. & Tzourou, I. (2008). A natural alternative to sulphur dioxide for red wine production: Influence on colour, antioxidant activity and anthocyanin content. J. Food. Compos. Anal. 21, 660–666. DOI: 10.1016/j.jfca.2008.03.010.

  • 7. Franz, C.M.A.P., Specht, I., Cho, G.S., Graef, V. & Stahl, M.R. (2009). UV-C-inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control. 20, 1103–1107. DOI: 10.1016/j.foodcont.2009.02.010.

  • 8. Koutchma. T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Tech. 2, 138–155. DOI: 10.1007/s11947-008-0178-3.

  • 9. Lu, G., Li, C., Liu, P., Cui, H., Yao, Y. & Zhang, Q. (2010). UV inactivation of microorganisms in beer by a novel thin-film apparatus. Food Control. 21, 1312–1317. DOI: 10.1016/j.foodcont.2010.03.007.

  • 10. Taze, B.H., Unluturk, S., Buzrul, S. & Alpas, H. (2015). The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. J. Food. Sci. Tech. 52(2), 1000–1007. DOI: 10.1007/s13197-013-1095-7.

  • 11. Islam, M.S., Patras, A., Pokharel, B., Wu, Y., Vergne, M. J., Shade, L., Xiao, H. & Sasges, M. (2016). UV-C irradiation as an alternative disinfection technique: Study of its effect on polyphenols and antioxidant activity of apple juice. Innov Food Sci. Emerg. 34, 344–351. DOI: 10.1016/j.ifset.2016.02.009.

  • 12. Samoticha, J., Wojdyło, A., Chmielewska, J. & Oszmiański, J. (2016). The effects of flash release conditions on the phenolic compounds and antioxidant activity of Pinot noir red wine. Eur. Food Res. Technol. 1–9. DOI: 10.1007/s00217-016-2817-7.

  • 13. Mijowska, K., Ochmian, I. & Oszmiański J. (2016). Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method. Molecules. 21(12), 1688. DOI: 10.3390/molecules21121688.

  • 14. Keyser, M., Műller, I. A., Cilliers, F.P., Nel, W. & Gouws, P.A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov Food Sci. Emerg. 9(3), 348–354. DOI: 10.1016/j.ifset.2007.09.002.

  • 15. Lorenzini, M., Fracchetti, F., Bolla, V., Stefanelli, E., Rossi, F. & Torriani, S. (2010). Ultraviolet light (UV-C) irradiation as an alternative technology for the control of microorganisms in grape juice and wine. In 33rd World Congress of Vine and Wine, 8th General Assembly of the OIV (pp. 20–25).

  • 16. Unluturk, S. & Atilgan, M.R. (2014). UV-C Irradiation of Freshly Squeezed Grape Juice and Modeling Inactivation Kinetics. J. Food Process. Eng. 37(4), 438–449. DOI: 10.1111/jfpe.12099.

  • 17. Falguera, V., Forns, M. & Ibarz, A. (2013). UV–vis irradiation: An alternative to reduce SO2 in white wines? LWT – Food Sci. Technol. 51, 59-64. DOI: 10.1016/j.lwt.2012.11.006.

  • 18. Pala, Ç.U. & Toklucu, A.K. (2013). Effects of UV-C light processing on some quality characteristics of grape juices. Food Bioprocess Tech. 6(3), 719–725. DOI: 10.1007/s11947-012-0808-7.

  • 19. Pala, Ç.U. & Toklucu, A.K. (2011). Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J. Food Compos. Anal. 24(6), 790–795. DOI: 10.1016/j.jfca.2011.01.003.

  • 20. Matias, F., Pinto, A.F., Torgal, I., Alves, M., Grácio, J. & Mira, H. (2016). The Ultraviolet radiation (UV-C) for the microbiological stabilization of red wine. In BIO Web of Conferences 7, 39th World Congress of Vine and Wine (Vol. 7, p. 02013). EDP Sciences. DOI: 10.1051/bioconf/20160702013.

  • 21. Pinto, E.P., Perin, E.C., Schott, I.B., da Silva Rodrigues, R., Lucchetta, L., Manfroi, V. & Rombaldi, C.V. (2016). The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv.‘Concord’). Posthar. Biol. Technol. 120, 84–91. DOI: 10.1016/j.postharvbio.2016.05.015.

  • 22. Cantos, E., Espín, J.C., Fernández, M.J., Oliva, J. & Tomás-Barberán, F.A. (2003). Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agric. Food Chem. 51(5), 1208–1214. DOI: 10.1021/jf020939z.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 44
PDF Downloads 13 13 11