Biochemical and cellular properties of Gluconacetobacter xylinus cultures exposed to different modes of rotating magnetic field

Open access


The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF) on cellular and biochemical properties of Gluconacetobacter xylinus during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC) production intensified the biochemical processes in G. xylinus as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production efficacy, the most favorable properties were found in the setting where RMF generator was switched off for the first 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kucińska-Lipka J. Gubanska I. & Janik H. (2015). Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospective. Polym. Bull. 72(9) 2399–2419. DOI: 10.1007/s00289-015-1407-3.

  • 2. Ross P. Mayer R. & Benziman M. (1991). Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55(1) 35–58.

  • 3. Koizumi S. Tomita Y. Kondo T. & Hashimoto T. (2009). What factors determine hierarchical structure of microbial cellulose - interplay among physics chemistry and biology. Macromol. Symp. 279(1) 110–118. DOI: 10.1002/masy.200950517.

  • 4. Lei L. Li S. & Gu Y. (2012). Cellulose synthase complexes: composition and regulation. Front. Plant Sci. 3 75. DOI: 10.3389/fpls.2012.00075.

  • 5. Ross P. Weinhouse H. Aloni Y. Michaeli D. Weinberger-Ohana P. Mayer R. Braun S. de Vroom E. van der Marel G.A. van Boom J.H. & Benziman M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325 279–281. DOI: 10.1038/325279a0.

  • 6. Yoshinaga F. Tonouchi N. & Watanabe K. (1997). Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61(2) 219–224. DOI: 10.1271/bbb.61.219.

  • 7. Li Y. Tian C. Tian H. Zhang J. He X. Ping W. & Lei H. (2012). Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl. Microbiol. Biotechnol. 96(6) 1479–1487. DOI: 10.1007/s00253-012-4242-6.

  • 8. Ragunathan S. & Levy H.R. (1994). Purification and characterization of the NAD-preferring glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum). Arch. Biochem. Biophys. 310(2) 360–366. DOI: 10.1006/abbi.1994.1179.

  • 9. Yang X.Y. Huang C. Guo H.J. Xiong L. Luo J. Wang B. Chen X.F. Lin X.Q. & Chen X.D. (2014). Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 54(3) 268–273. DOI: 10.1007/s12088-014-0450-3.

  • 10. Czaja W. Romanovicz D. & Brown R.M. (2004). Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3) 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.

  • 11. Hornung M. Ludwig M. & Schmauder H.P. (2007). Optimizing the production of bacterial cellulose in surface culture: A novel aerosol bioreactor working on a fed batch principle (Part 3). Eng. Life. Sci. 7(1) 35–41. DOI: 10.1002/elsc.200620164.

  • 12. Lin D. Lopez-Sanchez P. Li R. & Li Z. (2014). Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores. Technol. 151 113–119. DOI: 10.1016/j.biortech.2013.10.052.

  • 13. Mormino R. & Bungay H. (2003). Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl. Microbiol. Biotechnol. 62(5–6) 503–506. DOI: 10.1007/s00253-003-1377-5.

  • 14. Fijałkowski K. Żywicka A. Drozd R. Niemczyk A. Junka A.F. Peitler D. Kordas M. Konopacki M. Szymczyk P. El-Fray M. & Rakoczy R. (2015). Modification of bacterial cellulose through exposure to the rotating magnetic field. Carboh. Polym. 133 52–60. DOI: 10.1016/j.carbpol.2015.07.011.

  • 15. Velizarov S. (1999). Electric and magnetic fields in microbial biotechnology: possibilities limitations and perspectives. Electro. Magnetobiol. 18(2) 185–212. DOI: 10.3109/15368379909012912.

  • 16. Filipič J. Kraigher B. Tepuš B. Kokol V. & Mandic-Mulec I. (2012). Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Biores. Technol. 120 225–232. DOI: 10.1016/j.biortech.2012.06.023.

  • 17. Fojt L. Strasak L. Vetterl V. & Smarda J. (2004). Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli Leclercia adecarboxylata and Staphylococcus aureus. Bioelectrochemistry 63(1–2) 337–341. DOI: 10.1016/j.bioelechem.2003.11.010.

  • 18. Strašák L. Vetterl V. & Fojt L. (2005). Effects of 50 Hz magnetic fields on the viability of different bacterial strains. Electromagn. Biol. Med. 24(3) 293–300. DOI: 10.1080/15368370500379715.

  • 19. Hristov J. & Perez V.H. (2011). Critical analysis of data concerning Saccharomyces cerevisiae free-cell proliferations and fermentations assisted by magnetic and electromagnetic fields. Int. Rev. Chem. Eng. 3(1) 3–20.

  • 20. Fijałkowski K. Nawrotek P. Struk M. Kordas M. & Rakoczy R. (2015). Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria. Electromagn. Biol. Med. 34(1) 48–55. DOI: 10.3109/15368378.2013.869754.

  • 21. Fijałkowski K. Nawrotek P. Struk M. Kordas M. & Rakoczy R. (2013). The effect of rotating magnetic field on growth rate cell metabolic activity and biofilm formation by S. aureus and E. coli. J. Magn. 18(3) 289–296. DOI: 10.4283/JMAG.2013.18.3.289.

  • 22. Lee K.Y. Buldum G. Mantalaris A. & Bismarck A. (2014). More than meets the eye in bacterial cellulose: biosynthesis bioprocessing and applications in advanced fiber composites. Macromol. Biosci. 14(1) 10–32. DOI: 10.1002/mabi.201300298.

  • 23. Toyosaki H. Naritomi T. Seto A. & Yoshinaga F. (1995). Screening of bacterial cellulose-producing Acetobacter strains suitable for agitated culture. Biosci. Biotech. Biochem. 59(8) 1498–1502. DOI: 10.1271/bbb.59.1498.

  • 24. Park J.K. Hyun S.H. & Jung J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5) 383–388. DOI: 10.1007/BF02933062.

  • 25. Yoshino T. Asakura T. & Toda K. (1996). Cellulose production by Acetobacter pasteurianus on silicon membrane. J. Ferment. Bioeng. 81(1) 32–36. DOI: 10.1016/0922-338X(96)83116-3.

  • 26. Serafica G. Mormino R. & Bungay H. (2002). Inclusion of solid particle in bacterial cellulose. Appl. Microbiol. Biot. 58(6) 756–760. DOI: 10.1007/s00253-002-0978-8.

  • 27. Morrow A.C. Dunstan R.H. King B.V. & Roberts T.K. (2007). Metabolic effects of static magnetic fields on Streptococcus pyogenes. Bioelectromagnetics 28(6) 439–445. DOI: 10.1002/bem.20332.

  • 28. Toda K. Asakura T. Fukaya M. Entani E. & Kawamura Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3) 228–231. DOI: 10.1016/S0922-338X(97)82059-4.

  • 29. Rakoczy R. (2010). Enhancement of solid dissolution process under the influence of rotating magnetic field. Chem. Eng. Process. 49(1) 42–50. DOI: 10.1016/j.cep.2009.11.004.

  • 30. Fraňa K. Stiller J. & Grundmann R. (2006). Transitional and turbulent flows driven by a rotating magnetic field. Magnetohydrodynamics 42(2–3) 187–197.

  • 31. Walker J.S. (1999). Models of melt motion heat transfer and mass transport during crystal growth with strong magnetic field. Prog. Cryst. Growth Ch. 38(1) 195. DOI: 10.1016/S0960-8974(99)00012-1.

  • 32. Rakoczy R. & Masiuk S. (2010). Influence of transverse rotating magnetic field on enhancement of solid dissolution process. J. AIChE 56(6) 1416–1433. DOI: 10.1002/aic.12097.

  • 33. Moffatt H.K. (1991). Electromagnetic stirring. Phys. Fluids A 3(5) 1336–1343.

  • 34. Anton-Leberre V. Haanappel E. Marsaud N. Aka H. Haddour N. & Krähenbühl L. (2010). Exposure to high static of pulsed magnetic fields: does not affect cellular processes in the yeast Saccharomyces cerevisiae. Bioelectromagnetics 31(1) 28–38. DOI: 10.1002/bem.20523.

  • 35. Gaafar E.S.A. Hanafy M.S. Tohamy E.Y. & Ibahim M.H. (2008). The effect of electromagnetic field on protein molecular structure of E. coli and its pathogenesis. Rom. J. Biophys. 18(2) 145–169.

  • 36. Zhang Z. Yang Z. Zhu B. Hu J. Liew C.W. Zhang Y. Leopold J.A. Handy D.E. Loscalzo J. & Stanton R.C. (2012). Increasing glucose 6-phosphate dehydrogenase activity restores redox balance in vascular endothelial cells exposed to high glucose. PLoS One 7(11). DOI: 10.1371/journal.pone.0049128.

  • 37. Gao W. Liu Y. Zhou J. & Pan H. (2005). Effects of a strong static magnetic field on bacterium Shewanella oneidensis: an assessment by using whole genome microarray. Bioelectromagnetics 26(7) 558–563. DOI: 10.1002/bem.20133.

  • 38. Segatore B. Setacci D. Bennato F. Cardigno R. Amicosante G. & Iorio R. (2012). Evaluations of the effects of extremely low-frequency electromagnetic fields on growth and antibiotic susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int. J. Micro. 7. DOI: 10.1155/2012/587293.

  • 39. Rolfe M.D. Rice C.J. Lucchini S. Pin C. Thompson A. Cameron A.D. Alston M. Stringer M.F. Betts R.P. Baranyi J. Peck M.W. & Hinton J.C. (2012). Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194(3) 686–701. DOI: 10.1128/JB.06112-11.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 190 4
PDF Downloads 171 122 2