Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

Open access


The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G) was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform-Infrared Spectroscopy (FTIR), BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1), pH (4–11) and temperature (20–60°C) on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Gupta V.K. Srivastava S.K. Mohan D. & Sharma S. (1998). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage. 17(8) 517–522. DOI: 10.1016/S0956-053X(97)10062-9.

  • 2. Gupta V.K. Agarwal S. & Saleh T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal J. Hazard. Mater. 185(1) 17–23. DOI: 10.1016/j.jhazmat.2010.08.053.

  • 3. Gupta V.K. & Nayak A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180 81–90. DOI: 10.1016/j.cej.2011.11.006.

  • 4. Saleh T.A. & Gupta V.K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19(4) 1224–1228. DOI: 10.1007/s11356-011-0670-6.

  • 5. Gupta V.K. Nayak A. & Agarwal S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 20(1) 001–018. DOI: 10.4491/eer.2015.018.

  • 6. Goswami A. Raul P.K. & Purkait M.K. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90 1387–1396. DOI: 10.1016/j.cherd.2011.12.006.

  • 7. Khan T. Isa M.H. Mustafa M.R.U. Yeek-Chia H. Baloo L. Manan T.S.B.A. & Saeed M.O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv. 6 56365–56374. DOI: 10.1039/C6RA05618K.

  • 8. Giraldo L. Erto A. & Moreno-Piraján J.C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2) 465–474. DOI: 10.1007/s10450-012-9468–1.

  • 9. Krishna R.H. & Swamy A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1) 1–6. ISSN 2250-3153.

  • 10. Sanciolo P. Harding I.H. & Mainwaring D.E. (1992). The Removal of chromium nickel and zinc from electroplating wastewater by adsorbing colloid flotation with a sodium dodecylsulfate/dodecanoic acid mixture. Sep. Sci. Technol. 27 375–388. DOI: 10.1080/01496399208018887.

  • 11. Murthy Z.V.P. & Chaudhari L.B. (2008). Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160 70–77. DOI: 10.1016/j.jhazmat.2008.02.085.

  • 12. Siboni M.S. Samadi M.T. Yang J.K. & Lee S.M. (2012). Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin. Water Treat. 40 77–83. DOI: 10.1080/19443994.2012.671144.

  • 13. Chen X. Huang G. & Wang J. (2013). Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. J. Metall. Eng. 2 161–164.

  • 14. Dabrowski A. Hubicki Z. Podkościelny P. & Robens E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemo-sphere 56 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.

  • 15. Molinari R. Poerio T. & Argurio P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexationeultrafiltration process. Chemosphere 70 341–348. DOI: 10.1016/j.chemosphere.2007.07.041.

  • 16. Lakshtanov L.Z. & Stipp S.L.S. (2007). Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71 3686–3697.

  • 17. Al-Asheh S. Banat F. & Mobai F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12) 2087–2096. DOI: 10.1016/S0045-6535(99)00098-3.

  • 18. Vijayaraghavan K. Jegan J. Palanivelu K. & Velan M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.

  • 19. Vijayaraghavan K. Jegan J. Palanivelu K. & Velan M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44 53–59. DOI: 10.1016/j.seppur.2004.12.003.

  • 20. Panneerselvam P. Morad N. & Tan K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.

  • 21. Hasar H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97 49–57. DOI: 10.1016/s0304-3894(02)00237-6.

  • 22. Fiol N. Villaescusa I. Martinez M. Miralles N. Poch J. & Serarols J. (2006). Sorption of Pb(II) Ni(II) Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50 132–140. DOI: 10.1016/j.seppur.2005.11.016.

  • 23. Rao M. Parwate A.V. & Bhole A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22 821–830. DOI: 10.1016/S0956-053X(02)00011-9.

  • 24. Otun J.A Oke I.A. Olarinoye N.O. Adie D.B. & Okuofu C.A. (2006). Adsorption isotherms of Pb(II) Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11) 2368–2376.

  • 25. Olayinka O.K. Oyedeji O.A. & Oyeyiola O.A. (2009). Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk. Afr. J. Environ. Sci. Technol. 3(10) 286–293. DOI: 10.5897/AJEST09.053.

  • 26. Gao Z. Bandosz T.J. Zhao Z. Han M. & Qiu J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.

  • 27. Kandah M.I. & Meunier J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1-2) 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.

  • 28. Yang S. Li J. Shao D. Hu J. & Wang X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time pH foreign ions and PAA. J. Hazard. Mater. 166 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.

  • 29. Chen C. Hu J. Shao D. Li J. & Wang X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.

  • 30. Wu S. Huang J. Zhuo C. Zhang F. Sheng W. & Zhu M. (2016). One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. J. Inorg. Organomet. Polym. Mater. 26(3) 632–639. DOI: 10.1007/s10904-016-0355–1.

  • 31. He F. Fan J. Ma D. Zhang L. Leung C. & Chan H.L. (2010). The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11) 3139–3144. DOI: 10.1016/j.carbon.2010.04.052.

  • 32. Hao Y. Wang Z. Gou J. & Dong S. (2015). Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. Arabian J. Chem.

  • 33. Qu S. Huang F. Yu S. Chen G. & Kong J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160 643–647. DOI: 10.1016/j.jhazmat.2008.03.037.

  • 34. Zhu J. Guo H.G.J. Chen M. Wei H. Luo Z. Colorado H.A. Yerra N. Ding D. Ho T.C. Haldolaarachchige N. Hopper J. Young D.P. Guo Z. & Wei S. (2014). Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J. Mater. Chem. A 2 2256–2265. DOI: 10.1039/C3TA13957C.

  • 35. Pełech I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Technol. 12(3) 45–49. DOI: 10.2478/v10026-010-0033-y.

  • 36. Sykuła-Zając A. Turek M. Mathew M.P. Patai F. Horvat M. & Jabłońska J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081) 5–11.

  • 37. Li H. Zhao N. He C. Shi C. Du X. & Li J. (2008). Low temperature fabrication of hollow carbon nanospheres over Ni/Al2O3 by the catalytic method. J. Alloys Comp. 465 387–390. DOI: 10.1016/j.jallcom.2007.10.090.

  • 38. Canete-Rosales P. Ortega V. Álvarez-Lueje A. Bollo S. González M. Ansón A. & Martínez M.T. (2012). Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim. Acta 62 163–171. DOI: 10.1016/j.electacta.2011.12.043.

  • 39. Kolacyak D. Ihde J. Merten C. Hartwig A. & Lommatzsch U. (2011). Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J. Coll. Inter. Sci. 359 311–317. DOI: 10.1016/j.jcis.2011.03.069.

  • 40. Estévez-Martínez Y. Velasco-Santos C. Martínez-Hernández A.L. Delgado G. Cuevas-Yáñez E. Alaníz-Lumbreras D. Duron-Torres S. & Castaño V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J Nanomat. 2013 1–9. DOI: 10.1155/2013/702157.

  • 41. Coates J.P. (2000). A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd. Chichester.

  • 42. Chen J. Chen Q. Ma Q. Li Y. & Zhu Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd–Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356 114–120. DOI: 10.1016/j.molcata.2011.12.032.

  • 43. Helminiak A. Mijowska E. & Arabczyk W. (2013). Characterization of carbon deposit with controlled carburization degree. Mater. Sci. Pol. 31(1) 29–35. DOI: 10.2478/s13536-012-0063-7.

  • 44. Chairat M. Rattanaphani S. Bremner J.B. & Rattanaphani V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76 435–439. DOI: 10.1016/j.dyepig.2006.09.008.

  • 45. Kumar P.S. & Kirthika K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4) 351–363.

  • 46. Ai L. Zhou Y. & Jiang J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266 72–77. DOI: 10.1016/j.desal.2010.08.004.

  • 47. Kapoor A. & Viraragavan T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61 221–227. DOI: 10.1016/S0960-8524(97)00055-2.

  • 48. Suemitsu R. Uenishi R. Akashi I. & Kakano M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31 75–83. DOI: 10.1002/app.1986.070310108.

  • 49. Al-Rub F.A.A. Kandah M. & Aldabaibeh N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2 111–116. DOI: 10.1002/1618-2863(200204).

  • 50. Padmavathy V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic thermodynamic and desorption studies. Bioresour. Technol. 99 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.

  • 51. Ho Y.S. Jhonwase D.A. & Forster C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29 1327–1332. DOI: 10.1016/0043–1354(94)00236-3.

  • 52. Ewecharoen A. Thiravetyan P. & Nakbanpote W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137 181–188. DOI: 10.1016/j.cej.2007.04.007.

  • 53. Huang C. Ying-Chien C. & Ming-Ren L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45 265–267. DOI: 10.1016/0304-3894(95)00096-8.

  • 54. Sharma Y.C. & Srivastava V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55 1441–1442. DOI: 10.1021/je900619d.

  • 55. Meena A.K. Mishra G.K. Rai P.K. Rajgopal C. & Nagar P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.

  • 56. Johnson C.D. & Worrall F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 41 2229–2235. DOI: 10.1016/j.watres.2007.01.047.

  • 57. Kinhikar V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6) 6–11. ISSN 2231-606X.

  • 58. Yueming Ren N.Y. (2011). Graphene/δ-MnO 2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175 1–7. DOI: 10.1016/j.cej.2010.08.010.

  • 59. Jha V.K. Matsuda M. & Miyake M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+ Cu2+ Cd2+ and Pb2+. J. Hazard. Mater. 160 148–153. DOI: 10.1016/j.jhazmat.2008.02.107.

  • 60. Thamilarasu P. Sivakumar P. & Karunakaran K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5) 414–420.

  • 61. Zhang X. & Wang X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10 e0117077. DOI: 10.1371/journal.pone.0117077.

  • 62. Karagoz S. Tay T. Ucar S. & Erdem M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.

  • 63. Kara M. Yuzer H. Sabah E. & Celik M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37 224–232. DOI: 10.1016/S0043–1354(02)00265-8.

  • 64. Jaycock M.J. & Parfitt G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd. Onichester.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 379 95 4
PDF Downloads 165 53 1