Adsorption of Ni2+ from aqueous solution by magnetic Fe@graphite nano-composite

Open access

Abstract

The removal of Ni2+ from aqueous solution by iron nanoparticles encapsulated by graphitic layers (Fe@G) was investigated. Nanoparticles Fe@G were prepared by chemical vapor deposition CVD process using methane as a carbon source and nanocrystalline iron. The properties of Fe@G were characterized by X-ray Diffraction method (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform-Infrared Spectroscopy (FTIR), BET surface area and zeta potential measurements. The effects of initial Ni2+ concentration (1–20 mg L−1), pH (4–11) and temperature (20–60°C) on adsorption capacity were studied. The adsorption capacity at equilibrium increased from 2.96 to 8.78 mg g−1, with the increase in the initial concentration of Ni2+ from 1 to 20 mg L−1 at pH 7.0 and 20oC. The experimental results indicated that the maximum Ni2+ removal could be attained at a solution pH of 8.2 and the adsorption capacity obtained was 9.33 mg g−1. The experimental data fitted well with the Langmuir model with a monolayer adsorption capacity of 9.20 mg g−1. The adsorption kinetics was found to follow pseudo-second-order kinetic model. Thermodynamics parameters, ΔHO, ΔGO and ΔSO, were calculated, indicating that the adsorption of Ni2+ onto Fe@G was spontaneous and endothermic in nature.

1. Gupta, V.K., Srivastava, S.K., Mohan, D. & Sharma, S. (1998). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Manage. 17(8), 517–522. DOI: 10.1016/S0956-053X(97)10062-9.

2. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater. 185(1), 17–23. DOI: 10.1016/j.jhazmat.2010.08.053.

3. Gupta, V.K. & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 180, 81–90. DOI: 10.1016/j.cej.2011.11.006.

4. Saleh, T.A. & Gupta, V.K. (2012). Column with CNT/magnesium oxide composite for lead(II) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228. DOI: 10.1007/s11356-011-0670-6.

5. Gupta, V.K., Nayak, A. & Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 20(1), 001–018. DOI: 10.4491/eer.2015.018.

6. Goswami, A., Raul, P.K. & Purkait, M.K. (2012). Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90, 1387–1396. DOI: 10.1016/j.cherd.2011.12.006.

7. Khan, T., Isa, M.H., Mustafa, M.R.U., Yeek-Chia, H., Baloo, L., Manan, T.S.B.A. & Saeed, M.O. (2016). Cr(VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Adv. 6, 56365–56374. DOI: 10.1039/C6RA05618K.

8. Giraldo, L., Erto, A. & Moreno-Piraján, J.C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2), 465–474. DOI: 10.1007/s10450-012-9468–1.

9. Krishna, R.H. & Swamy, A. (2011). Kinetic and isotherm modeling of adsorption of Ni (II) form aqueous solutions onto powder of papaya seeds. Int. J. Sci. Res. Publ. 1(1), 1–6. ISSN 2250-3153.

10. Sanciolo, P., Harding, I.H. & Mainwaring, D.E. (1992). The Removal of chromium, nickel, and zinc from electroplating wastewater by adsorbing colloid flotation with a sodium dodecylsulfate/dodecanoic acid mixture. Sep. Sci. Technol. 27, 375–388. DOI: 10.1080/01496399208018887.

11. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70–77. DOI: 10.1016/j.jhazmat.2008.02.085.

12. Siboni, M.S., Samadi, M.T., Yang, J.K. & Lee, S.M. (2012). Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin. Water Treat. 40, 77–83. DOI: 10.1080/19443994.2012.671144.

13. Chen, X., Huang, G. & Wang, J. (2013). Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. J. Metall. Eng. 2, 161–164.

14. Dabrowski, A., Hubicki, Z., Podkościelny, P. & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemo-sphere 56, 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.

15. Molinari, R., Poerio, T. & Argurio, P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexationeultrafiltration process. Chemosphere 70, 341–348. DOI: 10.1016/j.chemosphere.2007.07.041.

16. Lakshtanov, L.Z. & Stipp, S.L.S. (2007). Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697. http://dx.doi.org/10.1016/j.gca.2007.04.006.

17. Al-Asheh, S., Banat, F. & Mobai, F. (1999). Sorption of copper and nickel by spent animal bones. Chemosphere 39(12), 2087–2096. DOI: 10.1016/S0045-6535(99)00098-3.

18. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223–230. DOI: 10.1016/j.jhazmat.2004.06.014.

19. Vijayaraghavan, K., Jegan, J., Palanivelu, K. & Velan, M. (2005). Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep. Purif. Technol. 44, 53–59. DOI: 10.1016/j.seppur.2004.12.003.

20. Panneerselvam, P., Morad, N. & Tan, K.A. (2011). Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 186, 160–168. DOI: 10.1016/j.jhazmat.2010.10.102.

21. Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 97, 49–57. DOI: 10.1016/s0304-3894(02)00237-6.

22. Fiol, N., Villaescusa, I., Martinez, M., Miralles, N., Poch, J. & Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140. DOI: 10.1016/j.seppur.2005.11.016.

23. Rao, M., Parwate, A.V. & Bhole, A.G. (2002). Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage. 22, 821–830. DOI: 10.1016/S0956-053X(02)00011-9.

24. Otun, J.A, Oke, I.A., Olarinoye, N.O., Adie, D.B. & Okuofu, C.A. (2006). Adsorption isotherms of Pb(II), Ni(II) and Cd(II) ions onto PES. J. Appl. Sci. 6(11), 2368–2376.

25. Olayinka, O.K., Oyedeji, O.A. & Oyeyiola, O.A. (2009). Removal of chromium and nickel ions from aqueous solution by adsorption on modified coconut husk. Afr. J. Environ. Sci. Technol. 3(10), 286–293. DOI: 10.5897/AJEST09.053.

26. Gao, Z., Bandosz, T.J., Zhao, Z., Han, M. & Qiu, J. (2009). Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167, 357–365. DOI: 10.1016/j.jhazmat.2009.01.050.

27. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146(1-2), 283–288. DOI: 10.1016/j.jhazmat.2006.12.019.

28. Yang, S., Li, J., Shao, D., Hu, J. & Wang, X. (2009). Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166, 109–116. DOI: 10.1016/j.jhazmat.2008.11.003.

29. Chen, C., Hu, J., Shao, D., Li, J. & Wang, X. (2009). Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J. Hazard. Mater. 164, 923–928. DOI: 10.1016/j.jhazmat.2008.08.089.

30. Wu, S., Huang, J., Zhuo, C., Zhang, F., Sheng, W. & Zhu, M. (2016). One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. J. Inorg. Organomet. Polym. Mater. 26(3), 632–639. DOI: 10.1007/s10904-016-0355–1.

31. He, F., Fan, J., Ma, D., Zhang, L., Leung, C. & Chan, H.L. (2010). The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon 48(11), 3139–3144. DOI: 10.1016/j.carbon.2010.04.052.

32. Hao, Y., Wang, Z., Gou, J. & Dong, S. (2015). Highly efficient adsorption and removal of Chrysoidine Y from aqueous solution by magnetic graphene oxide nanocomposite. Arabian J. Chem. http://dx.doi.org/10.1016/j.arabjc.2015.07.01.

33. Qu, S., Huang, F., Yu, S., Chen, G. & Kong, J. (2008). Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J. Hazard. Mater. 160, 643–647. DOI: 10.1016/j.jhazmat.2008.03.037.

34. Zhu, J., Guo, H.G.J., Chen, M., Wei, H., Luo, Z., Colorado, H.A., Yerra, N., Ding, D., Ho, T.C., Haldolaarachchige, N., Hopper, J., Young, D.P., Guo, Z. & Wei, S. (2014). Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J. Mater. Chem. A 2, 2256–2265. DOI: 10.1039/C3TA13957C.

35. Pełech, I. (2010). Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Technol. 12(3), 45–49. DOI: 10.2478/v10026-010-0033-y.

36. Sykuła-Zając, A., Turek, M., Mathew, M.P., Patai, F., Horvat, M. & Jabłońska, J. (2010). Determination of nickel in tea by using dimethylglyoxime method. Scientific Bulletin of the Technical University of Lodz. Food Chemistry and Biotechnology 74(1081), 5–11.

37. Li, H., Zhao, N., He, C., Shi, C., Du, X. & Li, J. (2008). Low temperature fabrication of hollow carbon nanospheres over Ni/Al2O3 by the catalytic method. J. Alloys Comp. 465, 387–390. DOI: 10.1016/j.jallcom.2007.10.090.

38. Canete-Rosales, P., Ortega, V., Álvarez-Lueje, A., Bollo, S., González, M., Ansón, A. & Martínez, M.T. (2012). Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim. Acta 62, 163–171. DOI: 10.1016/j.electacta.2011.12.043.

39. Kolacyak, D., Ihde, J., Merten, C., Hartwig, A. & Lommatzsch, U. (2011). Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J. Coll. Inter. Sci. 359, 311–317. DOI: 10.1016/j.jcis.2011.03.069.

40. Estévez-Martínez, Y., Velasco-Santos, C., Martínez-Hernández, A.L., Delgado, G., Cuevas-Yáñez, E., Alaníz-Lumbreras, D., Duron-Torres, S. & Castaño, V.M. (2013). Grafting of Multiwalled Carbon Nanotubes with Chicken Feather Keratin. J Nanomat. 2013, 1–9. DOI: 10.1155/2013/702157.

41. Coates, J.P. (2000). A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester.

42. Chen, J., Chen, Q., Ma, Q., Li, Y. & Zhu, Z. (2012). Chemical treatment of CNTs in acidic KMnO4 solution and promoting effects on the corresponding Pd–Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114–120. DOI: 10.1016/j.molcata.2011.12.032.

43. Helminiak, A., Mijowska, E. & Arabczyk, W. (2013). Characterization of carbon deposit with controlled carburization degree. Mater. Sci. Pol. 31(1), 29–35. DOI: 10.2478/s13536-012-0063-7.

44. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2008). Adsorption kinetic study of lac dyeing on cotton. Dyes Pigm. 76, 435–439. DOI: 10.1016/j.dyepig.2006.09.008.

45. Kumar, P.S. & Kirthika, K. (2009). Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder. J. Eng. Sci. Technol. 4(4), 351–363.

46. Ai, L., Zhou, Y. & Jiang, J. (2011). Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77. DOI: 10.1016/j.desal.2010.08.004.

47. Kapoor, A. & Viraragavan, T. (1998). Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227. DOI: 10.1016/S0960-8524(97)00055-2.

48. Suemitsu, R., Uenishi, R., Akashi, I. & Kakano, M. (1986). The use of dyestuff-treated rice hulls for removal of heavy metals from wastewater. J. Appl. Polym. Sci. 31, 75–83. DOI: 10.1002/app.1986.070310108.

49. Al-Rub, F.A.A., Kandah, M. & Aldabaibeh, N. (2002). Nickel removal from aqueous solution by using sheep Manure Waste. Eng. Life Sci. 2, 111–116. DOI: 10.1002/1618-2863(200204).

50. Padmavathy, V. (2008). Biosorption of Ni(II) ions on Baker’s yeast: kinetic, thermodynamic and desorption studies. Bioresour. Technol. 99, 3100–3109. DOI: 10.1016/j.biortech.2007.05.070.

51. Ho, Y.S., Jhonwase, D.A. & Forster, C.F. (1995). Batch nickel removal from aqueous solution by Sphagnum moss peat. Water Res. 29, 1327–1332. DOI: 10.1016/0043–1354(94)00236-3.

52. Ewecharoen, A., Thiravetyan, P. & Nakbanpote, W. (2008). Comparison of nickel adsorption form electroplating rinse water by coir pith and modified coir pith. Chem. Eng. J. 137, 181–188. DOI: 10.1016/j.cej.2007.04.007.

53. Huang, C., Ying-Chien, C. & Ming-Ren, L. (1996). Adsorption of Cu(II) and Ni(II) by palletized biopolimer. J. Hazard. Mater. 45, 265–267. DOI: 10.1016/0304-3894(95)00096-8.

54. Sharma, Y.C. & Srivastava, V. (2010). Separation of Ni(II) ions from aqueous solutions by magnetic nanoparticles. J. Chem. Eng. Data 55, 1441–1442. DOI: 10.1021/je900619d.

55. Meena, A.K., Mishra, G.K., Rai, P.K., Rajgopal, C. & Nagar, P.N. (2005). Removal of heavy metal ions from aqueous solution using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170. DOI: 10.1016/j.jhazmat.2005.03.024.

56. Johnson, C.D. & Worrall, F. (2007). Novel granular materials with microcrystalline active surfaces-waste water treatment applications of zeolite/vermiculite composites. Water Res. 41, 2229–2235. DOI: 10.1016/j.watres.2007.01.047.

57. Kinhikar, V.R. (2012). Removal of Nickel (II) from Aqueous Solutions by Adsorption with Granular Activated Carbon (GAC). Res. J. Chem. Sci. 2(6), 6–11. ISSN 2231-606X.

58. Yueming Ren, N.Y. (2011). Graphene/δ-MnO 2 composite as adsorbent for the removal of nickel ions from wastewater. Chem. Eng. J. 175, 1–7. DOI: 10.1016/j.cej.2010.08.010.

59. Jha, V.K., Matsuda, M. & Miyake, M. (2008). Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 160, 148–153. DOI: 10.1016/j.jhazmat.2008.02.107.

60. Thamilarasu, P., Sivakumar, P. & Karunakaran, K. (2011). Removal of Ni(II) from aqueous solutions by adsorption onto Cajanus cajan L Milsp seed shell activated carbons. Indian J. Chem. Technol. 18(5), 414–420.

61. Zhang, X. & Wang, X. (2015). Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10, e0117077. DOI: 10.1371/journal.pone.0117077.

62. Karagoz, S., Tay, T., Ucar, S. & Erdem, M. (2008). Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour. Technol. 99, 6214–6222. DOI: 10.1016/j.biortech.2007.12.019.

63. Kara, M., Yuzer, H., Sabah, E. & Celik, M.S. (2003). Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res. 37, 224–232. DOI: 10.1016/S0043–1354(02)00265-8.

64. Jaycock, M.J. & Parfitt, G.D. (1981). Chemistry of Interfaces. Ellis Horwood Ltd., Onichester.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 30
PDF Downloads 66 66 12