Thin-layer drying of sawdust mixture

Open access

Abstract

Drying behaviour of sawdust mixture was investigated in a convective dryer at 0.01 m/s and 25, 60, and 150°C air temperature. Sawdust mixture (60% of spruce and 40% of the second ingredient: beech, willow, ash, alder) and sawdust of spruce, beech, willow, alder and ash was used in the drying experiments. The sawdust mixture drying was affected by the drying of its ingredients. The experimental drying data were fitted to the theoretical, semi–theoretical, and empirical thin-layer models. The accuracies of the models were measured using the correlation coefficient, root mean square error, and reduced chi–square. All semi-theoretical and empirical models described the drying characteristics of sawdust mixture satisfactorily. The theoretical model of a sphere predicts the drying of sawdust mixture better than the theoretical model of an infinite plane. The effect of the composition of the sawdust mixture on the drying models parameters were also taken into account.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Prokkola H. Kuokkanen M. Kuokkanen T. & Lassi U. (2014). Chemical study of wood chip drying: biodegradation of organic pollutants in condensate waters from the drying process. Bioresources 9(3) 3761–3778. DOI: 10.15376/biores.9.3.3761-3778.

  • 2. Zanuncio A.J.V. Monteiro T.C. Lima J.T. Andrade H.B. & Carvalho A.G. (2013). Drying biomass for energy use of Eucalypts urophylla and Corymbia citrodora Logs. Bioresources 8(4) 5159–5168. DOI: 10.15376/biores.8.4.5159-5168.

  • 3. Santis-Espinosa L.F. Perez-Sarinana B.Y. Guerrero-Fajardo C.A. Saldana-Trinidad S. & Lopez-Vidana E.C. (2015). Drying mango (Mangifera indica L.) with solar energy as a pretreatment for bioethanol production. Bioresources 10(3) 6044–6054. DOI: 10.15376/biores.10.3.6044-6054.

  • 4. Gigler J.K. van Loon W.K.P. & Sonneveld C. (2004). Experiment and modelling of parameters influencing natural wind drying of willow chunks. Biomass Bioenerg 26(6) 507–514. DOI: 10.1016/j.biombioe.2003.09.004.

  • 5. He Z. Yang F. Peng Y. & Yi S. (2013). Ultrasound-assisted vacuum drying of wood: Effect on drying time and product quality. Bioresources 8(1) 855–863. DOI: 10.15376/biores.8.1.855-863.

  • 6. Dincer I. (1998). Moisture transfer analysis during drying of slab woods. Heat Mass Trans. 34(4) 317–320. DOI: 10.1007/s002310050265.

  • 7. Gigler J.K. van Loon W.K.P. van den Berg J.V. Sonneveld C. & Meerdink G. (2000). Natural wind drying of willow stems. Biomass Bioenerg 19(3) 153–163. DOI: 10.1016/S0961-9534(00)00029-5.

  • 8. Weres J. Olek W. & Guzenda R. (2000). Identification of mathematical model coefficients in the analysis of the heat and mass transport in wood. Dry Technol. 18(8) 1697–1708. DOI: 10.1080/07373930008917807.

  • 9. ASAE (American Society of Agricultural Engineers) (1994). Moisture measurements – forages ASAE Standards S358.2 DEC93.

  • 10. Pabis S. Jayas D.S. & Cenkowski S. (1998). Grain drying. Theory and practice. New York USA. John Wiley & Sons Inc.

  • 11. Sarvestani F.S. Rahini R. & Hatamipur M.S. (2014). An experimental study on drying characteristics and kinetics of figs (Ficus carica). Pol. J. Chem. Technol. 16(4) 60–64. DOI: 10.2478/pjct-2014-0071.

  • 12. Crank J. (1975). The mathematics of diffusion. 2nd Ed. Oxford Clarendon Press.

  • 13. Lewis W.K. (1921). The rate of drying of solid materials. J. Ind. Eng. Chem. 13(5) 427–432. DOI: 10.1021/ie50137a021.

  • 14. Henderson S.M. & Pabis S. (1961). Grain drying theory. I. Temperature effect on drying coefficient. J. Agr. Eng. Res. 6(3) 169–174.

  • 15. Yagcioglu A Degirmencioglu A. & Cagatay F. (1999). Drying characteristics of laurel leaves under different drying conditions. In: Proceedings of the 7th International congress on agricultural mechanization and energy. Adana Turkey 26–27 May 565–569.

  • 16. Henderson S.M. (1974). Progress in developing the thin–layer drying equation. T ASAE 17(6) 1167–1168. DOI: 10.13031/2013.37052.

  • 17. Noomhorm A. & Verma L.R. (1986). A generalized single – layer rice drying model. ASAE Paper No: 86–3057 ASAE St. Joseph Mi.

  • 18. Karathanos V.T. (1999). Determination of water content of dried fruits by drying kinetics. J. Food. Eng. 39(4) 337–344. DOI: 10.1016/S0260-8774(98)00132-0.

  • 19. Sharaf–Eldeen Y.I. Blaisdell J.L. & Hamdy M.Y. (1980). A model for ear corn drying. T ASAE 23(5) 1261–1265. DOI: 10.13031/2013.34757.

  • 20. Verma L.R. Bucklin R.A. Endan J.B. & Wratten F.T. (1985). Effect of drying air parameters on rice drying models. T ASAE 28(1) 296–301. DOI: 10.13031/2013.32245.

  • 21. Page G.E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. MSc Thesis Purdue University.

  • 22. Kaleta A. Górnicki K. Winiczenko R. & Chojnacka A. (2013). Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energ. Convers. Manag. 67(12) 179–185. DOI: 10.1016/j.enconman.2012.11.011.

  • 23. Hii C.L. Law C.L. & Cloke M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. J. Food Sci. Technol. 3(1) 1–10.

  • 24. Overhults D.G. White H.E. Hamilton H.E. & Ross I.J. (1973). Drying soybean with heated air. T ASAE 16(1) 112–113. DOI: 10.13031/2013.37459.

  • 25. Ademiluyi T. Oboho E.O. & Owudogu M. (2008). Investigation into the thin layer drying models of Nigerian popcorn varieties. Leonardo Electr. J. Pract. Technol. 13 47–62.

  • 26. Demir V. Gunhan T. & Yagcioglu A.K. (2007). Mathematical modelling of convection drying of green table olives. Biosyst Eng 98(1) 47–53. DOI: 10.1016/j.biosystemseng.2007.06.011.

  • 27. Wang C.Y. & Singh R.P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78–3001 ASAE St. Joseph Mi.

  • 28. Midilli A Kucuk H. & Yapar Z. (2002). A new model for single–layer drying. Dry Technol. 20(7) 1503–1513. DOI: 10.1081/DRT-120005864.

  • 29. STATISTICA (data analysis software system) (2011). version 10. StatSoft Inc. www.statsoft.com

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 356 132 7
PDF Downloads 130 69 1