Carbon nanotubes functionalized by salts containing stereogenic heteroatoms as electrodes in their battery cells

Open access

Abstract

This paper concentrates on electrochemical properties of groups of multi-walled carbon nanotubes (MWCNT) functionalized with substituents containing a stereogenic heteroatom bonded covalently to the surface of the carbon nanotube. This system was tested in Swagelok-type cells. The cells comprised a system (functionalized CNT with salts containing S and P atoms) with a working electrode, microfiber separators soaked with electrolyte solution, and a lithium foil counter/reference (commercial LiCoO2) electrode. The electrolyte solution was 1 M LiPF6 in propylene carbonate. Using standard techniques (cyclic voltammetry/chronopotentiometry), galvanostatic cycling was performed on the cells at room temperature with a CH Instruments Model 600E potentiostat/galvanostat electrochemical measurements. Methods of functionalization CNT were compared in terms of the electrochemical properties of the studied systems. In all systems, the process of charge/discharge was observed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Fergus J.W. (2010). Recent developments in cathode materials for lithium ion batteries. J. Pow. Sou. 195 939–954. DOI: 10.1016/j.jpowsour.2009.08.089.

  • 2. Antolini E. (2004). LiCoO2: formation structure lithium and oxygen nonstoichiometry electrochemical behaviour and transport properties. Sol. State Ionics. 170 159–171. DOI: 10.1016/j.ssi.2004.04.003.

  • 3. Rougier A. Bravereau P. & Delmas D. (1996). Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural magnetic and electrochemical studies. J. Electrochem. Soc.143 1168–1175. DOI: 10.1149/1.1836614.

  • 4. Liu H. Yang Y. & Zhang J. (2007). Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. J. Pow. Sou. 173 556–561. DOI: 10.1016/j.jpowsour.2007.04.083.

  • 5. Kanno R. Kubo H. Kawamoto Y. Kamiyama T. Izumi F. Takeda Y. & Takano M. (1994). Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides. Sol. State Chem. 110 216–225. DOI: 10.1006/jssc.1994.1163.

  • 6. Pérès J.P. Demourgues A. & Delmas C. (1998). Structural investigations on Li0.65zNi1+zO2 cathode material: XRD and EXAFS studies. Sol. State Ion. 111 135–144. DOI: 10.1016/S0167-2738(98)00122-2.

  • 7. Li D. Peng Z. Ren H. Guo W. & Zhou Y. (2008). Synthesis and characterization of LiNi1xCoxO2 for lithium batteries by a novel method. Mater. Chem. Phys. 107 171–176. DOI: 10.1021/cm0102537.

  • 8. Baskaran R. Kuwata N. Kamishima O. Kawamura J. & Selvasekarapandian S. (2009). Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery. Sol. State Ion. 180 636–643. DOI: 10.1016/j.ssi.2008.11.012.

  • 9. Sakamoto K. Hirayama M. Sonoyama N. Mori D. Yamada A. Tamura K. Mizuki J. & Kanno R. (2009). Surface Structure of LiNi0.8Co0.2O2: a New Experimental Technique Using in Situ X-ray Diffraction and Two-Dimensional Epitaxial Film Electrodes. Chem. Mater. 21(13) 2632–2640. DOI: 10.1021/cm8033559.

  • 10. Martha S.K. Sclar H. Framowitz Z.S. Kovacheva D. Saliyski N. Gofer Y. Sharon P. Golik E. Markovsky B. & Aurbach D. (2009). A comparative study of electrodes comprising nanometric and submicron particles of LiNi-0.50Mn0.50O2 LiNi0.33Mn0.33Co0.33O2 and LiNi0.40Mn0.40Co0.20O2 layered compounds. J. Pow. Sou. 189 248–255. DOI: 10.1016/j.jpowsour.2008.09.090.

  • 11. Lu C.H. & Lin Y.K. (2009). Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J. Pow. Sou. 189 40–44. DOI: 10.1016/j.jpowsour.2008.12.036.

  • 12. Koksbang R. (1991). Reversibility of the electrochemical lithium insertion in “Cr3O8”—comparison with LiCr3O8. Electrochim. Acta 36 127–133. DOI: 10.1016/0013-4686(91)85189-E.

  • 13. Vidya R. Ravindran P. Kjekshus A. & Fjellvåg H. (2006). Crystal and electronic structures of Cr3O8 and LiCr3O8: Probable cathode materials in Li batteries. Phys. Rev. B. 73 235113-1-235113-13. DOI: 10.1103/PhysRevB.73.235113.

  • 14. Naoki K. & Feng W. (2010). A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. Materials 3(7) 3818–3844. DOI: 10.3390/ma3073818.

  • 15. Mukherjee A. Combs R. Chattopadhyay J. & Abmayr D.W. (2008). Attachment of nitrogen and oxygen centered radicals to single-walled carbon nanotubes salts. Chem. Mater. 20 7339–7343. DOI: 10.1021/cm8014226.

  • 16. Chen Y. Haddon R.C. Fang S. Rao A.M. Eklund P.C. Lee W.H. Dicekey E.C. Grulke E.A. Pendergrass J.C. Chavan A. Haley B.E. & Smalley R.E. (1998). Chemical attachment of organic functional groups to single-walled carbon nanotubes material. J. Mater. Res. 13 2433–2431. DOI: 10.1557/JMR.1998.0337.

  • 17. Gao C. He H. Zhou L. Zheng X. & Zhang Y. (2009). Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry. Chem. Mater. 21 360–370. DOI: 10.1021/cm802704c.

  • 18. Han J. & Gao Ch. (2006). Functionalization of carbon nanotubes and other nanocarbons by azide chemistry. Nano-Micro Lett. 2(3) 213–226. DOI: 10.5101/nml.v2i3.p213-226.

  • 19. Dimitrios T. Tagmatarchis N. Bianco A. & Prato M. (2006). Chemistry of Carbon Nanotubes. Chem. Rev.106 1105–1136. DOI: 10.1021/cr050569o.

  • 20. Khabashesku V. N. Billups W. E. & Margrave J.L. (2002). Fluorination of Single-Wall Carbon Nanotubes and Subsequent Derivatization Reactions. Acc. Chem. Res. 35 1087–1095. DOI: 10.1021/ar020146y.

  • 21. Viswanathan G. Chakrapani N. Yang H. Wei B. Chung H. Cho K. Ryu C.Y. & Ajayan P.M. (2003). Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites. J. Am. Chem. Soc.125 9258–9259. DOI: 10.1021/ja0354418.

  • 22. Drabowicz J. Krasowska D. Janicka M. Zajac A. Wach-Panfiłow P. Ciesielski W. Michalski O. Kulawik D. Pyzalska M. Dudzinski B. Pokora-Sobczak P. Urbaniak M. & Makowski T. (2016). A stereogenic heteroatom-containing substituent as an inducer of chirality in the derivatives of thiophenes (mono oligo and poly) fullerenes C60 and multiwalled nanotubes Phosp. Sulf. Silic. 191 211–219. DOI: 10.1080/10426507.2015.1079198.

  • 23. Pyzalska M. Zdanowska S. Kulawik D. Pavlyuk V. Drabowicz J. & Ciesielski W. (2016). Właściwości fizykochemiczne bromowanych wielościennych nanorurek węglowych funkcjonalizowanych tiofosforanem O–metylo–O2–naftylo-–LN–metyloefedryniowym Przem. Chem. 94/12 2189–2194. DOI: 10.15199/62.2015.12.20.

  • 24. Bulusheva L.G. Okotrub A.V. Flahaut E. Asanov I.P. Gevko P.N. Koroteev V.O. Fedoseeva Y.V. Yaya A. & Ewels C.P. (2012). Bromination of Double-Walled Carbon Nanotubes. Chem. Mater. 24 2708–2715. DOI: 10.1021/cm300630.

  • 25. Souza–Filho A.G. Endo M. Muramatsu H. Hayashi T. Kim Y.A. Barros E.B. Akuzawa N. Samzonidze G.G. Saito R. & Dresselhaus M.S. (2006). Resonance Raman scattering studies in Br-2-adsorbed double-wall carbon nano-tubes. Phys. Rev. B. 73 235413-1–235413-12. DOI: 10.1103/PhysRevB.73.235413.

  • 26. A process for preparing iodinated carbon nanotubes. Application to the Polish Patent Office No. P. 395834.

  • 27. Drabowicz J. Ciesielski W. & Kulawik D.: Polish patent pending P-409662.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 108 8
PDF Downloads 135 70 6