Water-borne pressure-sensitive adhesives acrylics modified using amorphous silica nanoparticles

Open access

Abstract

The application of water-borne pressure-sensitive adhesives (PSA) based on acrylics is increasing in a variety of industrial areas. The have been used for manufacturing of double sided and carrier free mounting tapes, splicing tapes, marking and sign films, self-adhesive labels, packaging tapes, protective films and diverse high quality medical materials. Nano-sized inorganic fillers can modify diverse adhesive and self-adhesive coating properties such as tack, peel adhesion, shear strength at 20°C and 70°C, and removability Amorphous synthetic silica nanoparticles in form of water dispersions: Ludox PX-30 (30 wt.% silica stabilizing with counter ion sodium), Ludox PT-40 (40 wt.% silica stabilizing with counter ion sodium), Ludox PT-40AS (40 wt.% silica stabilizing with counter ion ammonium), and Ludox PW-50 (50 wt.% silica stabilizing with counter ion sodium) (from Grace) in concentrations between 1 and 5wt.% were used for modifying of water-born pressure-sensitive adhesive acrylics: Acronal 052, Acronal CR 516 (both BASF) and Plextol D273 (Synthomer) properties. It has been found in this study that the nano-technologically reinforced system containing of Acronal 052 and amorphous silica Ludox PX-30 showed a great enhancement in tack, peel adhesion and shear strength. In this paper we evaluate the performance of Acronal 052 modified with amorphous silica Ludox PX-30.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Czech Z. (1999). Crosslinking of pressure-sensitive adhesives based on acrylics Ed. Szczecin University of Technology Szczecin ISBN 83-87423-18-1.

  • 2. Zosel A. (1985) Adhesion and Tack of Polymers: Influence of Mechanical Properties and Surface Tensions. Coll. & Pol. Sci. 263(7) 541–553. DOI: 10.1007/BF01421887.

  • 3. Czech Z. & Wesolowska M. (2007). Development of solvent-free acrylic pressure-sensitive adhesives. Eur. Pol. J. 43 3604–3612. DOI: 10.1016/j.eurpolymj.2007.05.003.

  • 4. Czech Z. (2003). Crosslinking of pressure-sensitive adhesives based on water-borne acrylates. Pol. Int. 52 347–357. DOI: 10.1002/pi.1151.

  • 5. Nakayama Y. (1998). Polymer blend systems for water-borne paints. Prog. Org. Coat. 33 108–116. DOI: 10.1016/S0300-9440(98)00021-6.

  • 6. Frisch F. (2003). Nanotechnology gives a boost to adhesive technology. Adhäsion 4 16–19.

  • 7. Krüger G. (2006) Nanoparticles of SiO2 ZrO2 and BaSO4 in Acrylate Dispersions. Coating 3 113–115.

  • 8. Sprenger S. Eger C. Kinloch A. & Ambrose C. (2004). Nanoadhesives: toughness and high strength Adh. Adh. & Seal 3 20–24.

  • 9. Imerito T. (2005). Nanotechnology building from the bottom and building the bottom line. JOM 57(12) 18–23. DOI: 10.1007/s11837-005-0177-z.

  • 10. Hertel T. (2004). Kohlenstoff-Nanoröhren: Bausteine der Mikroelektronik von Morgen. Nach. Chem. 52 137–140.

  • 11. Liu J. Fu S. Yuan B. & Deng Z. (2010). Toward a Universal „Adhesive Nanosheet“ for the Assembly of Multiple Nanoparticles Based on a Protein-Inducted Reduction/Decoration of Graphene Oxide. J. Amer. Chem. Sci. 132 7279–7281 DOI: 10.1021/ja100938r.

  • 12. Lopez A. Canetta L. Creton C. & Keddie J. (2011) Waterborne Polyurethane-Acrylic Hybrid Nanoparticles by Miniemulsion Polymerisation: Applications in Pressure-Sensitive Adhesives. Langmuir 27 3878–3888. DOI: 10.1021/la104830u.

  • 13. Czech Z. Arabczyk W. Hełminiak A. & Kowalczyk A. (2013). Influence of iron carbide filler in carbon matrix on the tack peel adhesion shear strength of acrylic pressure-sensitive adhesives. Int. J. Adh. Adh. 40 210–214.

  • 14. Wady A.F. Machado A.L. Zucolotto V. & Zamperini C.A. (2012). Evaluation of Canadia albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. J. App. Micro. 112 1163–1172. DOI: 10.1111/j.1365-2672.2012.05293.x.

  • 15. Li M. Daniels E. Dimonie V. Sudol E. & El-Aasser S. (2005). Preparation of Polyurethane/Acrylic Hybrid Nano-particles via a Miniemulsion Polymerization Process. Macromol 38 4183–4192. DOI: 10.1021/ma048141z.

  • 16. Gashti M.P. Ali & Shamei F.A. (2012). Preparation of water-repellent cellulose fibers using a polycarboxylic acid/hydrophobic silica nonocomposite coating. Surf. Coat. Tech. 206 3208–3215. DOI: 10.1016/j.surfcoat.2012.01.006.

  • 17. Amerio E. Fabbri P. Malucelli G. Messori M. Sangermano M. & Taurino R. (2008). Scratch resistance of nano-silica reinforced acrylic coatings. Prog. Org. Coat. 62 129–133. DOI: 10.1016/j.progcoat.2007.10.003.

  • 18. Czech Z. Kowalczyk A. & Ortyl J. 2013. Acrylic pressure-sensitive adhesives containing SiO2 nanoparticles. Pol. J. Chem. Tech. 15(1) 12–14. DOI: 10.2478/pjct-2013-0003.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 486 259 11
PDF Downloads 264 163 6