Barium oxide as a modifier to stabilize the γ-Al2O3 structure

Open access


This research concentrated on the structural stability of γ-alumina (γ-Al2O3) was investigated by a combination of differential thermal analysis, X-ray diffractometry and surface-area measurements. The γ –to– θ and then α phase transitions were observed as an exothermic peak at 1000°C–1400°C in the DTA curves. The role of barium oxide as a modifier to stabilize γ-Al2O3 structure has been investigated. XRD measurements show that after calcination at 1000°C for 2 h, a significant fraction of the pure γ-Al2O3 (BaO-free) transformed to θ-Al2O3 while that the transition phase in alumina samples modified by BaO have been reduced significantly. Barium oxide, eliminate pentacoordinated aluminum ions through coordinative saturation and alter these ions into octahedral cations and effectively suppressed the γ –to– α phase transition in Al2O3, which concluded as improving the thermal stability and porous properties of the experimental samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kopanda J. MacZura G. & Hart L. (1990). Alumina Chemicals Science and Technology Handbook. In Alumina Chemicals Science and Technology Handbook.

  • 2. Yoldas B.E. (1976). Thermal stabilization of an active alumina and effect of dopants on the surface area. J. Mat. Sci. 11 465–470. DOI: 10.1007/BF00540927.

  • 3. Ozawa M. Kato O. Suzuki S. Hattori Y. & Yamamura M. (1996). Sintering and phase evolution of γ-Al2O3 with transition-metals addition at around α-transition temperature. J. Mat. Sci. Lett. 15 564–567. DOI: 10.1007/BF00579251.

  • 4. Mei D. Kwak J.H. Hu J. Cho S.J. Szanyi J. Allard L.F. & Peden C.H.F. (2010). Unique Role of Anchoring Penta-Coordinated Al3+ Sites in the Sintering of γ-Al2O3-Supported Pt Catalysts. J. Phys. Chem. Lett. 1 2688–2691. DOI: 10.1021/jz101073p.

  • 5. Paglia G. Buckley C.E. Rohl A.L. Hart R.D. Winter K. Studer A.J. Hunter B.A. & Hanna J.V. (2004). Boehmite derived γ-alumina system. 1. Structural evolution with temperature with the identification and structural determination of a new transition phase γ-alumina. Chem. Mat. 16 220–236. DOI: 10.1021/cm034917j.

  • 6. Pecharroman C. Sobrados I. Iglesias J.E. Gonzalez-Carreno T. & Sanz J. (1999). Thermal evolution of transitional aluminas followed by NMR and IR spectroscopies. J. Phys. Chem. B. 103 6160–6170. DOI: 10.1021/jp983316q.

  • 7. Tsyganenko A.A. & Mardilovich P.P. (1996). Structure of alumina surfaces. J. Chem. Soc. Faraday Trans 92 4843–4852. DOI: 10.1039/FT9969204843.

  • 8. Busca G. (1998). Spectroscopic characterization of the acid properties of metal oxide catalysts. Catal Today 41 191–206. DOI: 10.1016/S0920-5861(98)00049-2.

  • 9. Morterra C. & Magnacca G. (1996). A case study: surface chemistry and surface structure of catalytic aluminas as studied by vibrational spectroscopy of adsorbed species. Catal Today 27 497–532. DOI: 10.1016/0920-5861(95)00163-8.

  • 10. Digne M. Sautet P. Raybaud P. Euzen P. & Toulhoat H. (2002). Hydroxyl groups on γ-alumina surfaces: A DFT study. J. Catal. 211 1–5. DOI: 10.1006/jcat.2002.3741.

  • 11. Bravo-Suárez J.J. Chaudhari R.V. & Subramaniam B. (2013). Design of Heterogeneous Catalysts for Fuels and Chemicals Processing: An Overview. Am. Chem. Soc.). DOI: 10.1021/bk-2013-1132.ch001.

  • 12. Armstrong W.E. Ryland L.B. & Voge H.H. (1978). Catalyst Comprising Iridium or iridium-ruthenium catalyst for hydrazine decomposition. In US patent no. 4124538.: U.S. Patent and Trademark Office.

  • 13. Kappenstein C. & Joulin J. (2006). Ceramics as Catalysts and Catalyst Supports for Propulsion Applications-The Objectives and the Challenges. Adv. Sci. Technol. (Trans. Tech. Publ.) 2143–2152. DOI: 10.4028/

  • 14. Pakdehi S. Rasoolzadeh M. & Zolfaghari R. (2014). Synthesize and Investigation of the Catalytic Behavior of Ir/γ-Al2O3 Nanocatalyst. Adv. Mater. Res. 829. 163–167. DOI: 10.4028/

  • 15. Kwak J.H. Hu J. Mei D. Yi C.W. Kim D.H. Peden C.H.F. Allard L.F. & Szanyi J. (2009). Coordinatively Un-saturated Al3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al2O3. In Science 1670–1673. DOI: 10.1126/science.1176745.

  • 16. Chen F.R. Davis J.G. & Fripiat J.J. (1992). Aluminum Coordination and Lewis Acidity in Transition Aluminas. J. Cat. 133 263–278. DOI: 10.1016/0021-9517(92)90239-E.

  • 17. Santos P.S. Santos H.S. & Toledo S.P. (2000). Standard Transition Aluminas. Electron Microscopy Studies. Mater. Res. 3 104–114. DOI: 10.1590/S1516-14392000000400003.

  • 18. Kwak J.H. Hu J.Z. Kim D.H. Szanyi J. & Peden C.H.F. (2007). Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: An ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 251 189–194. DOI: 10.1016/j.jcat.2007.06.029.

  • 19. Kissinger H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 29 1702–1706. DOI: 10.1021/ac60131a045.

  • 20. Nguefack M. Popa A.F. Rossignol S. & Kappensteina C. (2003). Preparation of alumina through a sol-gel process synthesis characterization thermal evolution and model of intermediate Boehmite. Phys. Chem. Chem. Phys. 5 4279–4289. DOI: 10.1039/B306170A.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 359 114 8
PDF Downloads 183 91 15