Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

Open access

Abstract

In this paper, Co,Ce/Ca10(PO4)6(OH)2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE) were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL) decomposition tests. High ethanol conversion (close to 100%) was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H) ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH) as well as higher amount of hydrogen formed (up to 70%) under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Mathure P.V. Ganguly S. Patwardhan A.V. & Saha R.K. (2007). Steam reforming of ethanol using a commercial nickel-based catalyst. Ind. Eng. Chem. Res. 46 8471-8479. DOI: 10.1021/ie070321k.

  • 2. Soyal-Baltacioglu F. Aksoylu A.E. & Önsan Z.I. (2008). Steam reforming of ethanol over Pt-Ni Catalysts. Catal. Today 138 183-186. DOI: 10.1016/j.cattod.2008.05.035.

  • 3. Basagiannis A.C. Panagiotopoulou P. & Verykios X.E. (2008). Low temperature steam reforming of ethanol over supported noble metal catalysts. Top. Catal. 51 2-12. DOI: 10.1016/j.cattod.2008.05.035.

  • 4. Erdőhelyi A. Raskó J. Kecskés T. Tóth M. Dömök M. & Baán K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal. Today 116 367-376. DOI: 10.1016/j.cattod.2006.05.073.

  • 5. Furtado A.C. Alonso Ch.G. Cantão M.P. & Fernandes- Machado N.R.C. (2009). Bimetallic catalysts performance during ethanol steam reforming: infl uence of support materials. Int. J. Hydrogen Energy 34 7189-7196. DOI: 10.1016/j. ijhydene.2009.06.060.

  • 6. Lovón A.S.P. Lovón-Quintana J.J. Almerindo G.I. Valenca G.P. Bernardi M.I.B. Araújo V.D. Rodrigues T.S. Robles-Dutenhefner P.A. & Fajardo H.V. (2012). Preparation structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production. J. Pow. Sour. 216 281-289. DOI: 10.1016/j.jpowsour.2012.05.066.

  • 7. He L. Berntsen H. & Chen D. (2010). Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol. J. Phys. Chem. A 114 3834-3844. DOI: 10.1021/ jp906146y.

  • 8. Haryanto A. Fernando S. Murali N. & Adhikari S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energ. Fuel 19 2098-2106. DOI: 10.1021/ef0500538.

  • 9. Wang H. Ye J.L. Liu Y. Li Y.D. & Qin Y.N. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods. Catal. Today 129 305-312. DOI: 10.1016/j.cattod.2006.10.012.

  • 10. Liberatori J.W.C. Ribeiro R.U. Zanchet D. Noronha F.B. & Bueno J.M.C. (2007). Steam reforming of ethanol on supported nickel catalysts. Appl. Catal. A 327 197-204. DOI: 10.1016/j.apcata.2007.05.010.

  • 11. Nishiguchi T. Matsumoto T. Kanai H. Utani K. Matsumura Y. Shen W.J. & Imamura S. (2005). Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A 279 273-277. DOI: 10.1016/j.apcata.2004.10.035.

  • 12. Soykal I.I. Sohn H. & Ozkan U.S. (2012). Effect of support particle size in steam reforming of ethanol over Co/ CeO2 catalysts. ASC Catal. 2 2335-2348.

  • 13. Llorca J. Homs N. Sales J. & Ramírez de la Piscina P. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J. Catal. 209 306-317. DOI: 10.1006/jcat.2002.3643.

  • 14. Bayram B. Soykal I.I. von Deak D. Miller J.T. & Ozkan U.S. (2011). Ethanol steam reforming over Co-based catalysts: investigation of cobalt coordination environment under reaction conditions. J. Catal. 284 77-89. DOI: 10.1016/j. jcat.2011.09.001.

  • 15. Song H. Zhang L. & Ozkan U.S. (2010). Investigation of the reaction network in ethanol steam reforming over supported cobalt catalysts. Ind. Eng. Chem. Res. 49 8984-8989. DOI: 10.1021/ie100006z.

  • 16. Song H. Zhang L. & Ozkan U.S. (2012) The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for ethanol steam reforming. Top. Catal. 55 1324-1331. DOI: 10.1007/s11244-01209918-8.

  • 17. Park J.H. Lee D.W. Im S.W. Lee Y.H. Suh D.J. & Jun K.W. (2012). Oxidative coupling of methane using nonstoichiometric lead hydroxyapatite catalyst mixtures. Fuel 94 433-439. DOI: 10.1016/j.fuel.2011.08.056.

  • 18. Hakim L. Yaakob Z. Ismail M. Daud W.R.W. & Sari R. (2013). Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts. Chem. Pap. 67 703-712. DOI: 10.2478/s11696-013-0368-y

  • 19. Yasukawa A. Gotoh K. Tanaka H. & Kondori K. (2012). Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Coll. Surf. A. 393 53-59. DOI: 10.1016/j.colsurfa2011.10.024.

  • 20. Sugiyama S. Shono T. Makino D. Moriga T. Hayashi H. (2003). Enhancement of the catalytic activities in propane oxidation and H-D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite. J. Catal. 214 8-14. DOI: 10.1016/S0021-9517(02)00101-X.

  • 21. Aellach B. Ezzamarty A. Leglise J. Lamonier C. & Lamonier J.F. (2010). Calcium-defi cient and stoichiometric hydroxyapatites promoted by cobalt for the catalytic removal of oxygenated volatile organic compounds. Cat. Lett. 135 197-206. DOI: 10.1007/s10562-010-0282-7.

  • 22. Yaakob Z. Hakim L. Kumar M.N.S. Ismail M. Dau W.R.W. (2010). Hydroxyapatite supported nickel catalyst for hydrogen production. Am. J. Sci. Ind. Res. 1(2) 122-126. DOI: 10.5251/ajsir2010.1.2.122.126.

  • 23. Ogo S. Onda A. & Yanagisawa K. (2008). Hydrothermal synthesis of vanadate-substituted hydroxyapatites and catalytic properties for conversion of 2-propanol. Appl. Catal. A 348 129-134. DOI: 10.1016/j.apcata.2008.06.035.

  • 24. Jaworski J.W. Cho S. Kim Y. Jung J.H. Jeon H. S. Min B.K. & Kwon K. (2013). Hydroxyapatite supported cobalt catalysts for hydrogen generation. J. Coll. Interf. Sci. 394 401-408. DOI: 10.1016/j.jcis.2012.11.036.

  • 25. Fathi M.H. & Hanifi A. (2009). Sol-gel derived nanostructure hydroxyapatite powder and coating: aging time optimisation. Adv. Appl. Ceram. 6 363-368. DOI: 10.1179/174367609X414080.

  • 26. Martin D. & Duprez D. (1997). Evaluation of the acid- -base surface properties of several oxides and supported metal catalysts by means of model reactions. J. Mol. Catal. A-Chem. 118 113-128. DOI: 10.1016/S1381-1169(96)00371-8.

  • 27. Konsolakis M. Sgourakis M. & Carabineiro S.A.C. (2015). Surface and redox properties of cobalt-ceria binary oxides: on the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 341 48-54. DOI: 10.1016/j.apsusc.2015.02.188.

  • 28. Liotta L.F. Di Carlo G. Pantaleo G. & Deganello G. (2005). Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: correlation between morphology reduction and catalytic activity. Catal. Commun. 6 329-336. DOI: 10.1016/j.catcom.2005.02.006.

  • 29. Liotta L.F. Ousmane M. Di Carlo G. Pantaleo G. Deganello G. Boreave A. & Giroir-Fendler A. (2009). Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Cat. Lett. 127 270-276. DOI: 10.1007/s10562-008-9640-0.

  • 30. Zanchet D. Santos J.B.O. Damyanova S. Gallo J. M.R. & Buena J.M.C. (2015). Toward understanding metal- -catalyzed ethanol reforming. ASC Catal. 5 3841-3863. DOI: 10.1021/cs5020755.

  • 31. Batista M.S. Santos R.K.S. Assaf E.M. Assaf J.M. & Ticianelli E.A. (2004). High effi ciency steam reforming of ethanol by cobalt-based catalysts. J. Pow. Sour. 134 27-32. DOI: 10.1016/j.jpowsour.2004.01.052.

  • 32. Llorca J. Dalmon J.A. de la Piscina P.R. & Homs N. (2003). In situ magnetic characterization of supported cobalt catalysts under steam-reforming of ethanol. Appl. Catal. A 243 261-269. DOI: 10.1016/S0926-860X(02)00546-X.

  • 33. Llorca J. de la Piscina P.R. Dalmon J.A. & Homs N. (2004). Transformation of Co3O4 during ethanol steam-reforming. Activation process for hydrogen production. Chem. Mater. 16 3573-3578. DOI: 10.1021/cm049311p.

  • 34. Batista M.S. Santos R.K.S. Assaf E.M. Assaf J.M. & Ticianelli E.A. (2003). Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J. Pow. Sour. 124 99-103. DOI: 10.1016/S0378-7753(03)00599-8.

  • 35. de la Peña O’Shea V.A. Homs N. Pereira E.B. Nafria R. & de la Piscina P.R. (2007). X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal. Today 126 148-152. DOI: 10.1016/j.cattod.2006.10.002.

  • 36. Karim A.M. Su Y. Engelhard M.H. King D.L. & Wang Y. (2011). Catalytic Roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts. ACS Catal. 1 279-286. DOI: 10.1021/cs200014j.

  • 37. Lebarbier V.M. Karim A.M. Engelhard M.H. Wu Y. Xu B.Q. Petersen E.J. Datye A.K. & Wang Y. (2011). The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. ChemSusChem 4 1679-1684. DOI: 10.1002cssc.201100240.

  • 38. Galetti A.E. Gomez M.F. Arrúa L.A. & Abello M.C. (2008). Hydrogen production by ethanol reforming over NiZnAl catalysts. Infl uence of Ce addition on carbon deposition. Appl. Catal. A 348 94-102. DOI: 10.1016/j.apcata.2008.06.039.

  • 39. Song H. & Ozkan U.S. (2009). Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J. Catal. 261 66-74. DOI: 10.1016/j.jcat.2008.11.006.

  • 40. Xu W. Liu Z. Johnston-Peck A.C. Senanayake S.D. Zhou G. Stacchiola D. Stach E.A. & Rodriguez J.A. (2013). Steam reforming of ethanol on Ni/CeO2: reaction pathway and interaction between Ni and the CeO2 support. ACS Catal. 3 975-984. DOI: 10.1021/cs4000969.

  • 41. Machocki A. Denis A. Grzegorczyk W. & Gac W. (2010). Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for steam reforming of bio-ethanol. Appl. Surf. Sci. 256 5551-5558. DOI: 10.1016/j.apsusc.2009.12.137.

  • 42. Kumar A. Prasad R. & Sharma Y.C. (2014). Steam reforming of ethanol: production of renewable hydrogen. Int. J. Environ. Res. 3 203-212. From Research India Publication: http://www.ripublication.com/ijerd.htm

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 488 324 4
PDF Downloads 210 158 7