Removal of Cr(III) ions from salt solution by nanofiltration: experimental and modelling analysis

Open access


The aim of this study was experimental and modelling analysis of the nanofiltration process used for the removal of chromium(III) ions from salt solution characterized by low pH. The experimental results were interpreted with Donnan and Steric Partitioning Pore (DSP) model based on the extended Nernst-Planck equation. In this model, one of the main parameters, describing retention of ions by the membrane, is pore dielectric constant. In this work, it was identified for various process pressures and feed compositions. The obtained results showed the satisfactory agreement between the experimental and modelling data. It means that the DSP model may be helpful for the monitoring of nanofiltration process applied for treatment of chromium tannery wastewater.

1. Su, B., Wu, T., Li, Z., Cong, X., Gao, X. & Gao, C. (2015). Pilot study of seawater nanofiltration softening technology based on integrated membrane system. Desalination 368, 193-201. DOI: 10.1016/j.desal.2015.03.012.

2. Orecki, A., Tomaszewska, M., Karakulski, K. & Morawski, A.W. (2004). Surface water treatment by the nanofiltration method. Desalination 162, 47-54. DOI: 10.1016/S0011-9164(04)00026-8.

3. Liu, C., Shi, L. & Wang, R. (2015). Crosslinked layer-bylayer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO4 2− in feed water. J. Membr. Sci. 486, 169-176. DOI: 10.1016/j. memsci.2015.03.050.

4. Bellona, C. & Drewes, J.E. (2007). Viability of a lowpressure nanofilter in treating recycled water for water reuse applications: A pilot-scale study. Water Res. 41, 3948-3958. DOI: 10.1016/j.watres.2007.05.027.

5. Antczak, J., Regiec, J. & Prochaska, K. (2014). Separation and concentration of succinic acid from multicomponent aqueous solutions by nanofiltration technique. Pol. J. Chem. Tech. 16, 1-4. DOI: 10.2478/pjct-2014-0021.

6. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak, M. (2014). The study of glycerolbased fermentation and broth downstream by nanofiltration. Pol. J. Chem. Tech. 16, 117-122. DOI: 10.2478/pjct-2014-0081.

7. Ortega, L.M., Lebrun, R., Noël, I.M. & Hausler, R. (2005). Application of nanofiltration in the recovery of chromium(III) from tannery effluents. Sep. Purif. Technol. 44, 45-52. DOI: 10.1016/j.seppur.2004.12.002.

8. Das, C., Patel, P., De, S. & DasGupta, S. (2006). Treatment of tanning effluent using nanofiltration followed by reverse osmosis. Sep. Purif. Technol. 50, 291-299. DOI: 10.1016/j.seppur.2005.11.034.

9. Gomes, S., Cavaco, S.A., Quina, M.J. & Gando-Ferreira, L.M. (2010). Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis. Desalination 254, 80-89. DOI: 10.1016/j.desal.2009.12.010.

10. Nędzarek, A., Drost, A., Tórz, A., Harasimiuk, F. & Kwaśniewski, D. (2015). The impact of pH and sodium chloride concentration on the efficiency of the process of separating high-molecular compounds. J. Food Proc. Engine. 38, 115-124. DOI: 10.1111/jfpe.12131.

11. Drost, A., Nędzarek, A., Bogusławska-Wąs, E., Tórz, A. & Bonisławska, M. (2014). UF application for innovative reuse of fish brine: product quality, CCP management and the HACCP system. J. Food Proc. Engine. 37, 396-401. DOI: 10.1111/jfpe.12095.

12. Religa, P., Kowalik-Klimczak, A. & Gierycz, P. (2013). Study on the behavior of nanofiltration membranes using for chromium(III) recovery from salt mixture solution. Desalination 315, 115-123. DOI: 10.1016/j.desal.2012.10.036.

13. Religa, P., Kowalik, A. & Gierycz, P. (2011). Effect of membrane properties on chromium(III) recirculation from concentrate salt mixture solution by nanofiltration. Desalination 274, 164-170. DOI: 10.1016/j.desal.2011.02.006.

14. Religa, P., Kowalik, A., & Gierycz, P. (2011). A new approach to chromium concentration from salt mixture solution using nanofiltration. Sep. Purif. Technol. 82, 114-120. DOI: 10.1016/j.seppur.2011.08.032.

15. Tanninen, J., Mänttäri, M. & Nyström, M. (2006). Effect of salt mixture concentration on fractionation with NF membranes. J. Membr. Sci. 283, 57-64. DOI: 10.1016/j.memsci.2006.06.012.

16. Sharna, R.R. & Chellam, S. (2008). Solute rejection by porous thin film composite nanofiltration membranes at high feed water recoveries. J. Coll. Inter. Sci. 328, 353-366. DOI: 10.1016/j.jcis.2008.09.036.

17. Deon, S., Escoda, A. & Fievet, P. (2011). A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes. Chem. Eng. Sci. 66, 2823-2832. DOI: 10.1016/j.ces.2011.03.043.

18. Deon, S., Dutournie, P., Limousy, L. & Bourseau, P. (2009). Transport of salt mixture through nanofiltration membranes: Numerical identifi cation of electric and dielectric contributions. Sep. Purif. Technol. 69, 225-233. DOI: 10.1016/j.seppur.2009.07.022.

19. Chaudhari, L.B. & Murthy, Z.V.P. (2010).Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. J. Hazard. Mater. 180, 309-315. DOI: 10.1016/j.jhazmat.2010.04.032.

20. Kelewou, H., Lhassani, A., Merzouki, M., Drogui, P. & Sellamuthu, B. (2011). Salts retention by nanofiltration membranes: Physicochemical and hydrodynamic approaches and modelling. Desalination 277, 106-112. DOI: 10.1016/j.desal.2011.04.010.

21. Jarzyńska, M. & Pietruszka, M. (2011). The application of the Kedem-Katchalsky equations to membrane transport of ethyl alcohol and glucose. Desalination 280, 14-19. DOI: 10.1016/j.desal.2011.07.034.

22. Schaep, J., Vandecasteele, C., Mohammad, A.W. & Bowen, W.R. (2001). Modelling the retention of ionic components for different nanofiltration membranes. Sep. Purif. Technol. 22-23, 169-179. DOI: 10.1016/S1383-5866(00)00163-5.

23. Mohammad, A.W. & Takriff, M.S. (2003). Predicting flux and rejection of multicomponents salts mixture in nanofiltration membranes. Desalination 157, 105-111. DOI: 10.1016/ S0011-9164(03)00389-8.

24. Hagmeyer, G. & Gimbel, R. (1998). Modelling the salt rejection of nanofiltration membranes for ternary ion mixture and for single salts at different pH value. Desalination 117, 247-256. DOI: 10.1016/S0011-9164(98)00109-X.

25. Murthy, Z.V.P. & Chaudhari, L.B. (2008). Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedemmodel. Chem. E ng. J. 150, 81-187. DOI: 10.1016/j.cej.2008.12.023.

26. Nędzarek, A., Drost, A., Harasimiuk, F.B. & Tórz, A. (2015). The influence of pH and BSA on the retention of selected heavy metals in the nanofiltration process using ceramic membrane. Desalination 369, 62-67. DOI: 10.1016/j. desal.2015.04.019.

27. Norm PN-77/C-04604 (in Polish).

28. Norm PN-ISO 9297:1994 (in Polish).

29. Bes-Piá, A., Cuartas-Uribe, B., Mendoza-Roca, J.A. & Alcaina-Miranda, M.I. (2010). Study of the behaviour of different NF membranes for the reclamation of a secondary textile effluent in rinsing processes. J. Hazard. Mater. 178, 341-348. DOI: 10.1016/j.jhazmat.2010.01.085.

30. Atkins, P.W. (2012). Physical Chemistry. WN

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 314 223 14
PDF Downloads 129 97 10