Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite

Open access

Abstract

In this study novel transversal pneumatic artificial muscles (TPAM), made from composite – poly(dimethylsiloxane) (PDMS) matrix membrane and poly(ethylene terephthalate) (PET) satin reinforcement, are presented. Miniature TPAM consists of a flexible internal braid (IB) reinforcing the membrane and the external braid (EB). EB, with fibers arranged transversely to the IB, is placed laterally. Differently prepared TPAMs were tested for their effectiveness as actuators for robot drive and the PDMS/PET composite suitability was evaluated for applications in human gastrointestinal tract (chemical resistance, thermal characteristic). FT-IR spectra of the composite were compared for study PDMS impregnation process of PET satin and effect of immersion in selected solution. The composite shows outstanding biocompatibility and the muscles have competitive static load characteristics in comparison with other pneumatic artificial muscles (PAM). These results lead to believe, that in the near future painless examination of the gastrointestinal tract using a secure robot will be possible.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Daerden F. & Lefeber D. (2002). Pneumatic artificial muscles: actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1) 10–21.

  • 2. Chou C.P. & Hannaford B. Measurement and modeling of McKibben Pneumatic Artificial Muscles. (1996). IEEE Trans Robot Autom. 12(1) 90–102. DOI: 10.1109/70.481753.

  • 3. Daerden F. & Lefeber D. (2001). The concept and design of Pleated Pneumatic Artificial Muscles. Int. J. Fluid. Power. 2(3) 41–50. DOI: 10.1080/14399776.2001.10781119.

  • 4. Villegas D. Van Damme M. Vanderborght B. Beyl P. & Lefeber D. (2012). Third-Generation Pleated Pneumatic Artificial Muscles for Robotic Applications: Development and Comparison with McKibben Muscle. Adv. Robot. 26(11–12) 1205–1227. DOI: 10.1080/01691864.2012.689722.

  • 5. Lee Y.K. & Shimoyama I. (2002 January). A multi-channel micro valve for micro pneumatic artificial muscle. In Micro Electro Mechanical Systems 2002. The Fifteenth IEEE International Conference on (pp. 702–705). IEEE.

  • 6. Lee Y.K. & Shimoyama I. (1999). A skeletal framework artificial hand actuated by pneumatic artificial muscles. In Robotics and Automation 1999. Proceedings. 1999 IEEE International Conference on (Vol. 2 pp. 926–931). IEEE.

  • 7. Koter K. Podsedkowski L. & Szmechtyk T. (2015 July). Transversal Pneumatic Artificial Muscles. In Robot Motion and Control (RoMoCo) 2015 10th International Workshop on (pp. 235–239). IEEE. DOI: 10.1109/RoMoCo.2015.7219741.

  • 8. Zhou J. Ellis A.V. & Voelcker N.H. (2010). Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1) 2–16. DOI: 10.1002/elps.200900475.

  • 9. Chaffin K.A. Wilson C.L. Himes A.K. Dawson J.W. Haddad T.D. Buckalew A.J. & Simha N.K. (2013). Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature. Biomaterials 34(33) 8030–8041. DOI: 10.1016/j.biomaterials.2013.06.049.

  • 10. Chen Z. Um T.I. & Bart-Smith H. (2012). Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart. Nano. Mat. 3(4) 296–308. DOI: 10.1080/19475411.2012.686458.

  • 11. Unver O. Uneri A. Aydemir A. & Sitti M. (2006 May). Geckobot: a gecko inspired climbing robot using elastomer adhesives. In Robotics and Automation 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 2329–2335). IEEE.

  • 12. Martinez R.V. Branch J.L. Fish C.R. Jin L. Shepherd R.F. Nunes R. & Whitesides G.M. (2013). Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25(2) 205–212. DOI: 10.1002/adma.201203002.

  • 13. Konishi S. Nokata M. Jeong O.C. Kusuda S. Sakakibara T. Kuwayama M. & Tsutsumi H. (2006 May). Pneumatic micro hand and miniaturized parallel link robot for micro manipulation robot system. In Robotics and Automation 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on (pp. 1036–1041). IEEE. DOI: 10.1109/ROBOT.2006.1641846.

  • 14. Yoshida K. Ide T. Kim J.W. & Yokota S. (2009 August). A microgripper using electro-rheological fluid. In ICCAS-SICE 2009 (pp. 2987–2990). IEEE.

  • 15. Chang J.H. Kim S.J. Joo Y.L. & Im S. (2004). Poly (ethylene terephthalate) nanocomposites by in situ interlayer polymerization: the thermo-mechanical properties and morphology of the hybryd fibers. Polymer 45(3) 919–926. DOI: 10.1016/j.polymer.2003.11.037.

  • 16. Hoover A.M. & Fearing R.S. (2008 May). Fast scale prototyping for folded millirobots. In Robotics and Automation 2008. ICRA 2008. IEEE International Conference on (pp. 886–892). IEEE.

  • 17. Ming A. Luekiatphaisan N. & Shimojo M. (2012 August). Development of flapping robots using piezoelectric fiber composites—Improvement of flapping mechanism inspired from insects with indirect flight muscle. In Mechatronics and Automation (ICMA) 2012 International Conference on (pp. 1880–1885). IEEE.

  • 18. Deimel R. & Brock O. (2013 May). A compliant hand based on a novel pneumatic actuator. In Robotics and Automation (ICRA) 2013 IEEE International Conference on (pp. 2047–2053). IEEE. DOI: 10.1109/ICRA.2013.6630851.

  • 19. Kingsley D. & Quinn R.D. (2002). Fatigue life and frequency response of braided pneumatic actuators. In Robotics and Automation 2002. Proceedings. ICRA’02. IEEE International Conference on (Vol. 3 pp. 2830–2835). IEEE. DOI: 10.1109/ROBOT.2002.1013661.

  • 20. Loganathan K.S. (1998). Rubber engineering. Indian Rubber Institute McGraw-Hill New York Chapter 1(2000).

  • 21. American Society for Testing and Materials. (1992). ASTM D 543–87. Standard methods for evaluating the resistance of plastics to chemical reagents. Annual book of ASTM standards 8(1). Philadelphia (PA).

  • 22. Ohtsuki C. Kokubo T. & Yamamuro T. (1992). Mechanism of apatite formation on CaO SiO2 P2O5 glasses in a simulated body fluid. J. Non-Cryst Sol. 143 84–92. DOI: 10.1016/S0022-3093(05)80556-3.

  • 23. Roff W.J. & Scott J.R. (2013). Fibres films plastics and rubbers: a handbook of common polymers. Elsevier.

  • 24. Lee J. Kim J. Kim H. Bae Y.M. Lee K.H. & Cho H.J. (2013). Effect of thermal treatment on the chemical resistance of polydimethylsiloxane for microfluidic devices. J. Micromech. Microengin. 23(3) 035007. DOI: 10.1088/0960-1317/23/3/035007.

  • 25. Holland B.J. & Hay J.N. (2002). The thermal degradation of PET and analogous polyesters measured by thermal analysis–Fourier transform infrared spectroscopy. Polymer 43(6) 1835–1847. DOI: 10.1016/S0032-3861(01)00775-3.

  • 26. Zhang Y. Zhang J. Lu Y. Duan Y. Yan S. & Shen D. (2004). Glass transition temperature determination of poly (ethylene terephthalate) thin films using reflection-absorption FTIR. Macromolecules 37(7) 2532–2537. DOI: 10.1021/ma035709f.

  • 27. Zhang C. & Chen Z. (2013). Probing Molecular Structures of Poly (dimethylsiloxane) at Buried Interfaces in Situ. J. Phys. Chem. C 117(8) 3903–3914. DOI: 10.1021/jp307472j.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 366 168 1
PDF Downloads 123 59 2