Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites

Open access


Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP) in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12)-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12) addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12) particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Toth LE. Transition metal carbides and nitrides. New York: Academic Press; 1971.

  • 2. Gubernat A. & Stobierski L. (2009). Węgliki metalopodobne Cz. I. Badania nad spiekaniem. Cer. Mat. 61(2) 113–118 from PTCer database on the World Wide Web:

  • 3. Cha S.I. & Hong S.H. (2003). Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Mater. Sci. Eng. A 356(1) 381–389. DOI: 10.1016/S0921-5093(03)00151-5.

  • 4. Zhao J. Holland T. Unuvar C. & Munir Z.A. (2009). Sparking plasma sintering of nanometric tungsten carbide. Int. J. Refract. Met. Hard Mater. 27(1) 130–139. DOI: 10.1016/j.ijrmhm.2008.06.004.

  • 5. Zhu Y. Murali S. Cai W. Li X. Suk J.W. Potts J.R. & Ruoff R.S. (2010). Graphene and graphene oxide: synthesis properties and applications. Adv. Mater. 22(35) 3906–3924. DOI: 10.3144/expresspolymlett.2011.79.

  • 6. Ramirez C. Figueiredo F.M. Miranzo P. Poza P. & Osendi M.I. (2012). Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10) 36073615. DOI:10.1016/j.carbon.2012.03.031.

  • 7. Rutkowski P. Klimczyk P. Jaworska L. Stobierski L. & Dubiel A. (2015) Thermal properties of pressure sintered alumina–graphene composites. J. Therm. Anal. Calorim. 1–10 DOI: 10.1007/s10973-015-4694-x.

  • 8. Rutkowski P. Stobierski L. & Górny G. (2014). Thermal stability and conductivity of hot-pressed Si3N4–graphene composites. J. Therm. Anal. Calorim. 116(1) 321–328. DOI: 10.1007/s10973-013-3565-6.

  • 9. Ramírez C. Vega-Diaz S.M. Morelos-Gomez A. Figueiredo F.M. Terrones M. Osendi M.I. & Miranzo P. (2013). Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon 57 425–432. DOI: 10.1016/j.carbon.2013.02.015.

  • 10. Fan Y. Estili M. Igarashi G. Jiang W. & Kawasaki A. (2014). The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites. J. Eur. Soc. Ceram. 34(2) 443–451. DOI: 10.1016/j.jeurceramsoc.2013.08.035.

  • 11. Liu J. Yan H. Reece M.J. & Jiang K. (2012). Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Soc. Ceram. 32(16) 4185–4193. DOI: 10.1016/j.jeurceramsoc.2012.07.007.

  • 12. Kvetková L. Duszová A. Kašiarová M. Dorčáková F. Dusza J. & Balázsi C. (2013). Influence of processing on fracture toughness of Si3N4+ graphene platelet composites. J. Eur. Soc. Ceram. 33(12) 2299–2304. DOI: 10.1016/j.jeurceramsoc.2013.01.025.

  • 13. Dusza J. Morgiel J. Duszová A. Kvetková L. Nosko M. Kun P. & Balázsi C. (2012). Microstructure and fracture toughness of Si3N4+ graphene platelet composites. J. Eur. Soc. Ceram. 32(12) 3389–3397. DOI: 10.1016/j.jeurceramsoc.2012.04.022.

  • 14. Kvetková L. Duszová A. Hvizdoš P. Dusza J. Kun P. & Balázsi C. (2012). Fracture toughness and toughening mechanisms in graphene platelet reinforced Si 3 N 4 composites. Scr. Mat. 66(10) 793–796. DOI: 10.1016/j.scriptamat.2012.02.009.

  • 15. Yazdani B. Xia Y. Ahmad I. & Zhu Y. (2015). Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Soc. Ceram. 35(1) 179–186. DOI: 10.1016/j.jeurceramsoc.2014.08.043.

  • 16. Ramirez C. Miranzo P. Belmonte M. Osendi M.I. Poza P. Vega-Diaz S.M. & Terrones M. (2014). Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Soc. Ceram. 34(2) 161–169. DOI: 10.1016/j.jeurceramsoc.2013.08.039.

  • 17. Ramirez C. & Osendi M.I. (2014). Toughening in ceramics containing graphene fillers. Cer. Int. 40(7) 11187–11192. DOI: 10.1016/j.ceramint.2014.03.150.

  • 18. Nieto A. Lahiri D. & Agarwal A. (2013). Graphene NanoPlatelets reinforced tantalum carbide consolidated by spark plasma sintering. Mater. Sci. Eng. A 582 338–346. DOI: 10.1016/j.msea.2013.06.006.

  • 19. Rutkowski P. Stobierski L. Zientara D. Jaworska L. Klimczyk P. & Urbanik M. (2015). The influence of the graphene additive on mechanical properties and wear of hotpressed Si3N4 matrix composites. J. Eur. Soc. Ceram. 35(1) 87–94. DOI: 10.1016/j.jeurceramsoc.2014.08.004.

  • 20. Hvizdoš P. Dusza J. & Balázsi C. (2013). Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Soc. Ceram. 33(12) 2359–2364. DOI: 10.1016/j.jeurceramsoc.2013.03.035.

  • 21. Tuinstra F. & Koenig J.L. (1970). Raman spectrum of graphite. J. Chem. Phys. 531126–1130. DOI: 10.1063/1.1674108.

  • 22. Ramirez C. & Osendi M.I. (2013). Characterization of graphene nanoplatelets-Si 3 N 4 composites by Raman spectroscopy. J. Eur. Soc. Ceram. 33(3) 471–477. DOI: 10.1016/j.jeurceramsoc.2012.09.014.

  • 23. Zheng Yan & Andrew R. Barron Characterization of Graphene by Raman Spectroscopy retrived 17 September 2015. from:

  • 24. Gubernat A. Rutkowski P. Grabowski G. & Zientara D. (2014). Hot pressing of tungsten carbide with and without sintering additives. Int. J. Refract. Met. Hard Mater. 43 193–199. DOI: 10.1016/j.ijrmhm.2013.12.002.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1472 890 32
PDF Downloads 1075 857 54