Preparation, characterization and rheological behavior of chitosan nanocapsule emulsion encapsulated tuberose fragrance

Open access


In this paper, ionic gelation method was adopted to produce nanocapsules (CNs) encapsulated tuberose fragrance with chitosan (CS) and sodium tripolyphosphate (TPP) as wall materials. The effects of CS/TPP mass ratio, pH value of CS solution, molecular mass of CS and tuberose fragrance (TF) concentration on particle size and particle size distribution (PDI) of chitosan nanocapsules encapsulated tuberose fragrance (CNTs) were investigated systematically. CNTs were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The results showed that CNTs were successfully prepared. The optimum preparation conditions were as follows: CS/TPP mass ratio 5:1, pH of CS solution 4.0, and molecular mass of CS 150 kda. CNTs emulsions were also systematically investigated by steady-state shear and oscillatory shear measurements respectively. The rheological behaviors of CNTs were obtained.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhu G.Y. Xiao Z.B. Zhou R.J. & Zhu. Y.L. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105 75–80. DOI: 10.1016/j.carbpol.2014.01.060.

  • 2. Chen C.K. Law W.C. Aalinkeelm R. Yu Y. Nair B. Wu J. Mahajan S. Reynolds J.L. Li Y. Lai C.K. Tzanakakis E.S. Schwartz S.A. Prasad P.N. & Cheng C. (2014). Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug–gene co-delivery to cancer cells. Nanoscale 6 1567–1572. DOI: 10.1039/C3NR04804G.

  • 3. El-Gogary R.I. Rubio N. Wang J.T.W. Al-Jamal W. T. Bourgognon M. Kafa H. Naeem M. Klippstein R. Abbate V. Leroux F. Bals S. Tendeloo G.V. Kamel A.O. Awad G.A.S. Mortada N.D. & Al-Jamal K.T. (2014). polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8 1384–1401. DOI: 10.1021/nn405155b.

  • 4. Xiao Z.B. Liu W.L. Zhu G.Y. Zhou R.J. & Niu Y.W. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr. J. 29 166–172. DOI: 10.1002/ffj.3192.

  • 5. Alves N.M. & Mano J.F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 43 401–414. DOI: 10.1016/j.ijbiomac.2008.09.007.

  • 6. Li L.H. Deng J.C. Deng H.R. Liu Z.L. & Xin L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 345 994–998. DOI: 10.1016/j.carres.2010.03.019.

  • 7. Okamoto Y. Kawakami K. Miyatake K. Morimoto M. Shigemasa Y. & Minami S. (2002). Analgesic effects of chitin and chitosan. Carbohyd. Polym. 49 249–252. DOI: 10.1016/S0144-8617(01)00316-2.

  • 8. Anitha A. Deepa N. Chennazhi K. P. Nair S. V. Tamura H. & Jayakumar R. (2011). Preparation characterization in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohyd. Polym. 83 66–73. DOI: 10.1016/j.carbpol.2011.01.005.

  • Zhang Y.Q. Chen J.J. Zhang Y.D. Pan Y.F. Zhao J.F. Ren L.F. Liao M.M. Hu Z.Y. Kong L. & Wang J.W. (2007). A novel PEGylation of chitosan nanoparticles for gene delivery. Biotech. Appl Biochem. 46 197–204. DOI: 10.1042/BA20060163.

  • 10. Moura M.R. Aouada F.A. Avena-Bustillos R.J. McHugh T.H. Krochta J.M. & Mattoso L.H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 92 448–453. DOI: 10.1016/j.jfoodeng.2008.12.015.

  • 11. Jayakumar R. Menon D. Manzoor K. Nair S.V. & Tamura H. (2010). Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohyd. Polym. 82 227–232. DOI: 10.1016/j.carbpol.2010.04.074.

  • 12. Li Q. Mahendra S. Lyon D.Y. Brunet L. Liga M. V. Li D. & Alvarez P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42 4591–4602. DOI: 10.1016/j.watres.2008.08.015.

  • 13. Kim D.G. Jeong Y.I. Choi C. Roh S.H. Kang S.K. Jang M.K. & Nah J.W. (2006). Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Phytoremediat. 319 130–138. DOI: 10.1016/j.ijpharm.2006.03.040.

  • 14. Songsurang K. Praphairaksit N. Siraleartmukul K. & Muangsin N. (2011). Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch. Pharm. Res. 34 583–592. DOI: 10.1007/s12272-011-0408-5.

  • 15. Xu Y. & Hanna M.A. (2007). Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J. Microencapsul. 24 143–151. DOI: 10.1080/02652040601058434.

  • 16. Chein R. & Huang G. (2005). Analysis of microchannel heat sink performance using nanofluids. Appl. Therm. Eng. 25 3104–3114. DOI: 10.1016/j.applthermaleng.2005.03.008.

  • 17. Nguyen C.T. Desgranges F. Roy G. Galanis N. Mare T. Boucher S. & Angue M.H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon. Int. J. Heat Fluid Fl. 28 1492–1506. DOI: 10.1016/j.ijheatfluidflow.2007.02.004.

  • 18. Hobbie E.K. (2010). Shear rheology of carbon nanotube suspensions. Rheol. Acta 49 323–334. DOI: 10.1007/s00397-009-0422-4.

  • 19. Penkavova V. Tihon J. & Wein O. (2011). Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Res. Lett. 6 273–276. DOI: 10.1186/1556-276X-6-273.

  • 20. Chen H. Ding Y. Lapkin A. & Fan X. (2009). Rheological behaviour of ethylene glycoltitanate nanotube nanofluids. J. Nanopart. Res. 11 1513–1520. DOI: 10.1007/s11051-009-9599-9.

  • 21. Mahbubul I.M. Saidur R. & Amalina M.A. (2012). Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Tran. 55 874–885. DOI: 10.1016/j.ijheatmasstransfer.2011.10.021.

  • 22. Tseng W.J. & Chen C.N. (2006). Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41 1213–1219. DOI: 10.1007/s10853-005-3659-z.

  • 23. Wang Y. Yang X.P. Liu W.T. Zhang F. Cai Q. & Deng X.L. (2013). Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. J. Microencapsul. 30 490–497. DOI: 10.3109/02652048.2012.752537.

  • 24. Luckham P.F. & Ukeje M.A. (1999). Effect of particle size distribution on the rheology of dispersed systems. J. Col. Inter. Sci. 220 347–356. DOI: 10.1006/jcis.1999.6515.

  • 25. Stoica R. Şomoghi R. & Ion R.M. (2013). Preparation of chitosan-tripolyphosphate nanoparticles for the encapsulation of polyphenols extracted from rose hips. Dig. J. Nanomater. Bios. 8 955–963.

  • 26. Hu B. Pan C.L. Sun Y. Hou Z.J. Ye H. & Zeng X.X. (2008). Optimization of Fabrication Parameters To Produce Chitosan – Tripolyphosphate Nanoparticles for Delivery of Tea Catechins. J. Agric. Food Chem. 56 7451–7458. DOI: 10.1021/jf801111c.

  • 27. Papadimitriou S. Bikiaris D. & Avgoustakis K. (2008). Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohyd. Polym. 73 44–54. DOI: 10.1016/j.carbpol.2007.11.007.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 575 139 9
PDF Downloads 225 77 10